满分5 > 高中数学试题 >

已知函数f(x)=x3-x (1)求曲线y=f(x)在点M(t,f(t))处的切...

已知函数f(x)=x3-x
(1)求曲线y=f(x)在点M(t,f(t))处的切线方程
(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:-a<b<f(a)
(1)求出f′(x),根据切点为M(t,f(t)),得到切线的斜率为f'(t),所以根据斜率和M点坐标写出切线方程即可; (2)设切线过点(a,b),则存在t使b=(3t2-1)a-2t3,于是过点(a,b)可作曲线y=f(x)的三条切线即为方程2t3-3at2+a+b=0有三个相异的实数根.记g(t)=2t3-3at2+a+b,求出其导函数=0时t的值,利用t的值分区间讨论导函数的正负得到g(t)的单调区间,利用g(t)的增减性得到g(t)的极值,根据极值分区间考虑方程g(t)=0有三个相异的实数根,得到极大值大于0,极小值小于0列出不等式,求出解集即可得证. 【解析】 (1)求函数f(x)的导函数;f'(x)=3x2-1. 曲线y=f(x)在点M(t,f(t))处的切线方程为:y-f(t)=f'(t)(x-t),即y=(3t2-1)x-2t3; (2)如果有一条切线过点(a,b),则存在t,使b=(3t2-1)a-2t3. 于是,若过点(a,b)可作曲线y=f(x)的三条切线,则方程2t3-3at2+a+b=0有三个相异的实数根. 记g(t)=2t3-3at2+a+b,则g'(t)=6t2-6at=6t(t-a). 当t变化时,g(t),g'(t)变化情况如下表: 由g(t)的单调性,当极大值a+b<0或极小值b-f(a)>0时,方程g(t)=0最多有一个实数根; 当a+b=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根; 当b-f(a)=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根. 综上,如果过(a,b)可作曲线y=f(x)三条切线,即g(t)=0有三个相异的实数根,则 即-a<b<f(a).
复制答案
考点分析:
相关试题推荐
椭圆C的中心为坐标原点O,焦点在y轴上,短轴长为manfen5.com 满分网、离心率为manfen5.com 满分网,直线l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且manfen5.com 满分网
(I)求椭圆方程;
(II)求m的取值范围.
查看答案
祖国大陆开放台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务.某台商到大陆一创业园投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元.设f(n)表示前n年的纯收入(f(n)=前n年的总收入-前n年的总支出-投资额)
(Ⅰ)从第几年开始获取纯利润?
(Ⅱ)若干年后,该台商为开发新项目,有两种处理方案:①年平均利润最大时以48万元美元出售该厂;②纯利润总和最大时,以16万美元出售该厂,问哪种方案最合算?
查看答案
已知等腰梯形PDCB中(如图1),PB=3,DC=1,PB=BC=manfen5.com 满分网,A为PB边上一点,且PA=1,将△PAD沿AD折起,使面PAD⊥面ABCD(如图2)
(I)证明:平面PAD⊥PCD;
(II)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分VPDCMA:VMACB=2:1;
(III)在M满足(Ⅱ)的情况下,判断直线AM是否平行面PCD.

manfen5.com 满分网 查看答案
△ABC的内角A、B、C的对边分别为a、b、c,三边长a、b、c成等比数列.
(I)若manfen5.com 满分网,求证△ABC为正三角形;  
(II)若manfen5.com 满分网,求manfen5.com 满分网的值.
查看答案
manfen5.com 满分网在可行域内任取一点,规则如流程图所示,则能输出数对(x,y)的概率是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.