已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线x-y+2=0相切,A,B分别是椭圆的左右两个顶点,P为椭圆C上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P与A,B均不重合,设直线PA与PB的斜率分别为k
1,k
2,证明:k
1•k
2为定值;
(Ⅲ)M为过P且垂直于x轴的直线上的点,若
,求点M的轨迹方程,并说明轨迹是什么曲线.
考点分析:
相关试题推荐
如图,已知直四棱柱ABCD-A
1B
1C
1D
1的底面是直角梯形,AB⊥BC,AB∥CD,E,F分别是棱BC,B
1C
1上的动点,且EF∥CC
1,CD=DD
1=1,AB=2,BC=3.
(Ⅰ)证明:无论点E怎样运动,四边形EFD
1D都为矩形;
(Ⅱ)当EC=1时,求几何体A-EFD
1D的体积.
查看答案
设数列{a
n}是首项为a
1(a
1>0),公差为2的等差数列,其前n项和为S
n,且
成等差数列.
(Ⅰ)求数列{a
n]的通项公式;
(Ⅱ)记
的前n项和为T
n,求T
n.
查看答案
某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 低碳族的人数 | 占本组的频率 |
第一组 | [25,30) | 120 | 0.6 |
第二组 | [30,35) | 195 | p |
第三组 | [35,40) | 100 | 0.5 |
第四组 | [40,45) | a | 0.4 |
第五组 | [45,50) | 30 | 0.3 |
第六组 | [50,55) | 15 | 0.3 |
(Ⅰ)补全频率分布直方图并求n、a、p的值;
(Ⅱ)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.
查看答案
在△ABC中,已知A=45°,
.
(Ⅰ)求cosC的值;
(Ⅱ)若BC=10,D为AB的中点,求CD的长.
查看答案
以下是面点师一个工作环节的数学模型:如图,在数轴上截取与闭区间[0,4]对应的线段,对折后(坐标4所对应的点与原点重合)再均匀地拉成4个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标1、3变成2,原来的坐标2变成4,等等).那么原闭区间[0,4]上(除两个端点外)的点,在第n次操作完成后(n≥1),恰好被拉到与4重合的点所对应的坐标为
.
查看答案