满分5 > 高中数学试题 >

某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下...

manfen5.com 满分网某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组;第一组[13,14),第二组[14,15),…,第五组[17,18],下图是按上述分组方法得到的频率分布直方图.
(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)设m,n表示该班某两位同学的百米测试成绩,且已知m,n∈[13,14)∪[17,18],求事件“|m-n|>1”的概率.
(1)利用频率分布直方图中的频率等于纵坐标乘以组距求出绩大于或等于14秒且小于16秒的频率;利用频数等于频率乘以样本容量求出该班在这次百米测试中成绩良好的人数. (2)按照(1)的方法求出成绩在[13,14)及在[17,18]的人数;通过列举得到m,n都在[13,14)间或都在[17,18]间或一个在[13,14)间一个在[17,18]间的方法数,三种情况的和为总基本事件的个数;分布在两段的情况数是事件“|m-n|>1”包含的基本事件数;利用古典概型的概率公式求出事件“|m-n|>1”的概率. 【解析】 (1)由直方图知,成绩在[14,16)内的人数为:50×0.16+50×0.38=27(人), 所以该班成绩良好的人数为27人、 (2)由直方图知,成绩在[13,14)的人数为50×0.06=3人, 设为为x,y,z;成绩在[17,18]的人数为50×0,08=4人,设为A、B、C、D. 若m,n∈[13,14)时,有xy,xz,yz共3种情况; 若m,n∈[17,18]时,有AB,AC,AD,BC,BD,CD,共6种情况; 若m,n分别在[13,14)和[17,18]内时, A B C D x xA xB xC xD y yA yB yC yD z zA zB zC zD 有12种情况、 所以,基本事件总数为3+6+12=21种,事件“|m-n|>1”所包含的基本事件个数有12种、 ∴(12分)
复制答案
考点分析:
相关试题推荐
已知向量manfen5.com 满分网=(cosωx,sinωx),manfen5.com 满分网=(cosωx,manfen5.com 满分网cosωx),其中(0<ω<2).函数,manfen5.com 满分网其图象的一条对称轴为manfen5.com 满分网
(I)求函数f(x)的表达式及单调递增区间;
(Ⅱ)在△ABC中,a、b、c分别为角A、B、C的对边,S为其面积,若manfen5.com 满分网=1,b=l,S△ABC=manfen5.com 满分网,求a的值.
查看答案
已知数列{an}满足:Sn=1-an(n∈N*),其中Sn为数列{an}的前n项和.
(Ⅰ)试求{an}的通项公式;
(Ⅱ)若数列{bn}满足:manfen5.com 满分网(n∈N*),试求{bn}的前n项和公式Tn
查看答案
A.(不等式选讲选做题)如果存在实数x使不等式|x+1|-|x-2|<k成立,则实数k的取值范围是   
B.(几何证明选讲选做题)如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,manfen5.com 满分网,则AC的长为   
C.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(0≤θ<2π)中,曲线
ρ=2sinθ与ρcosθ=-1的交点的极坐标为   
manfen5.com 满分网 查看答案
设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为    查看答案
设2a=5b=m,且manfen5.com 满分网,m=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.