满分5 > 高中数学试题 >

在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=b...

在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC;
(1)求角B的大小;
(2)设manfen5.com 满分网的最大值是5,求k的值.
(1)先根据正弦定理将边的关系转化为正弦值的关系,再由两角和与差的正弦公式和诱导公式求出cosB的值,最后确定角B的值. (2)先根据向量数量积的运算表示出,再运用余弦函数的二倍角公式将2A化为A的关系,最后令t=sinA,转化为一个一元二次函数求最值的问题. 【解析】 (I)∵(2a-c)cosB=bcosC,∴(2sinA-sinC)cosB=sinBcosC 即2sinAcosB=sinBcosC+sinCcosB=sin(B+C) ∵A+B+C=π,∴2sinAcosB=sinA∵0<A<π,∴sinA≠0. ∴cosB=∵0<B<π,∴B=. (II)=4ksinA+cos2A=-2sin2A+4ksinA+1,A∈(0,) 设sinA=t,则t∈(0,1].则=-2t2+4kt+1=-2(t-k)2+1+2k2,t∈(0,1] ∵k>1,∴t=1时,取最大值.依题意得,-2+4k+1=5,∴k=.
复制答案
考点分析:
相关试题推荐
在△ABC中,a、b、c分别是角A、B、C的对边,若(a+b+c)(b+c-a)=3bc.
(1)求角A的值;
(2)在(1)的结论下,若manfen5.com 满分网,求y=cos2x+sinA•sin2x的最值.
查看答案
求经过直线l1:7x-8y-1=0和l2:2x+17y+9=0的交点,且垂直于直线2x-y+7=0的直线方程.
查看答案
已知函数f(x)满足f(1)=2,manfen5.com 满分网,则f(1)•f(2)•f(3)•…•f(2009)的值为     查看答案
若定义在R上的减函数y=f(x),对于任意的x,y∈R,不等式f(x2-2x)≤-f(2y-y2)成立;且函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,manfen5.com 满分网的取值范围    查看答案
若数列{an}的通项公式为manfen5.com 满分网,{an}的最大值为第x项,最小项为第y项,则x+y等于    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.