(Ⅰ)先设出M(x,y),P(x1,y1),Q(x2,y2),根据.∠POQ=,得到含M,P,Q三点坐标的关系式,再因为直线l1、l2分别是过P、Q两点抛物线的切线,所以直线l1、l2的斜率分别是抛物线在P,Q两点处的导数,再求出直线l1、l2的方程,联立解出交点坐标,把得到的式子与前面得到的式子联立化简,就可得到M点的轨迹方程.
(Ⅱ)先求边BM上的高所在直线,其过点A,且斜率为,再与AB边上的高x= 联立即可得垂心的纵坐标,最后两点所在直线方程为一条垂直于y轴的直线
【解析】
(Ⅰ)设P(x1,y1),Q(x2,y2),M(x,y)
∵∠POQ=
∴== ①
∵直线l1、l2分别是过P、Q两点抛物线的切线,y=x2,y′=2x
∴直线l1的方程为y-x12=2x1(x-x1)
直线l2的方程为y-x22=2x2(x-x2)
∴l1、l2的交点
∴x12+x22=(x1+x2)2-2x1x2=4x2-2y,y12+y22=x14+x24=(x12+x22)2-2x12x22=(4x2-2y)2-2y2 ②
将②代入①得
=
化简得4x2-y2-6y-1=0(y≠0)
故答案为4x2-y2-6y-1=0(y≠0)
(Ⅱ)由(I)得,A(,0),B(,0)
过点A,且与l2垂直的直线方程为y=(x-) ③
过点M,且与AB垂直的直线方程为x= ④
将④代入③得△ABM的垂心纵坐标y=-
∴过△ABM的垂心与点的直线方程是y=-
故答案为y=-