先根据导函数的两个根的分布建立a、b的约束条件,而 可看作点P(1,2)与阴影部分内一点(a,b)连线的斜率,由此问题转化为线性规划求范围问题,然后利用线性规划的方法求出目标函数的取值范围即可.
【解析】
∵函数
∴f′(x)=x2+ax+2b=0的两个根为x1,x2,
∵x1,x2分别在区间(0,1)与(1,2)内
∴⇒
画出区域如图,
而 可看作点P(1,2)与阴影部分内一点(a,b)连线的斜率,如图绿色线即为符合条件的直线的边界,
M,N两个点为边界处的点,
当连线过M(-3,1)时,,
当连线过N(-1,0)时,,
由图知 ∈.
故选C.