满分5 > 高中数学试题 >

已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E...

已知抛物线C:x2=4y的焦点为F,过点F作直线l交抛物线C于A、B两点;椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率e=manfen5.com 满分网
(1)求椭圆E的方程;
(2)经过A、B两点分别作抛物线C的切线l1、l2,切线l1与l2相交于点M.证明:AB⊥MF;
(3)椭圆E上是否存在一点M′,经过点M′作抛物线C的两条切线M′A′、M′B(A′、B′为切点),使得直线A′B′过点F?若存在,求出抛物线C与切线M′A′、M′B所围成图形的面积;若不存在,试说明理由.
(1)由点抛物线焦点F是椭圆的一个顶点可得b=1,由椭圆离心率e=得=,椭圆方程可求. (2)要证明AB⊥MF,只需证=0即可.设直线l的方程为y=kx+,1与双曲线方程联立,消去y,得到关于A,B点横坐标的一元二次方程,求两根的和与积,再用导数求过A,B点的切线方程,求出切点坐标,计算即可. (3)先假设椭圆E上存在点M′,经过点M′作抛物线C的两条切线M′A′、M′B(A′、B′为切点),直线A′B′过点F. 再根据假设与已知条件去求M′坐标,如果存在,用所求结果求抛物线C与切线M′A′、M′B所围成图形的面积. 【解析】 (1)设椭圆E的方程为,半焦距为c. 由已知条件,F(0,1),∴b=1,=,a2=b2+c2, 解得a=2,b=1.所以椭E的方程为. (2)显然直线l的斜率存在,否则直线l与抛物线C只有一个交点,不合题意, 故可设直线l的方程为y=kx+1,A(x1,y1)B(x2,y2)(x1≠x2) 与抛物线方程联立,消去y,并整理得,x2-4kx-4=0 ∴x1x2=-4. ∵抛物线的方程为y=x2,求导得y′=x, ∴过抛物线上A,B两点的切线方程分别是 y-y1=x1(x-x1),y-y2=x2(x-x2) 即y=x1x-,y=x2x-x22 解得两条切线的交点M的坐标为(,-1) ∴•=0 ∴AB⊥MF. (3)假设存在点M′满足题意,由(2)知点M′必在直线y=-1上,又直线y=-1与椭圆有唯一交点,故M′的坐标为(0.-1), 设过点M′且与抛物线C相切的切线方程为y-y=x(x-x):,其中点(x,y)为切点. 令x=0,y=-1得,-1-x2=x(0-x),解得x=2或x=-2, 故不妨取A′(-2,1)B′(2,1),即直线A′B′过点F. 综上所述,椭圆E上存在一点M′(0,-1),经过点M′作抛物线C的两条切线M′A′、M′B′ (A′、B′为切点),能使直线A′B′过点F. 此时,两切线的方程分别为y=-x-1和y=x-1. 抛物线C与切线M′A′、M′B′所围成图形的面积为 ==.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(I)求数列{an}的通项公式及Sn的最大值;
(II)令manfen5.com 满分网,其中n∈N*,求{nbn}的前n项和.
查看答案
如图,四边形ABCD是圆柱OQ的轴截面,点P在圆柱OQ的底面圆周上,G是DP的中点,
圆柱OQ的底面圆的半径OA=2,侧面积为manfen5.com 满分网,∠AOP=120°.
(1)求证:AG⊥BD;
(2)求二面角P-AG-B的平面角的余弦值.

manfen5.com 满分网 查看答案
manfen5.com 满分网上海世博会深圳馆1号作品《大芬丽莎》是由大芬村507名画师集体创作的999幅油画组合而成的
世界名画《蒙娜丽莎》,因其诞生于大芬村,因此被命名为《大芬丽莎》.某部门从参加创作的507名画师中随机抽出100名画师,测得画师年龄情况如表所示.
分组
(单位:岁)
频数频率
[20,25)50.050
[25,30)0.200
[30,35)35
[35,40)300.300
[40,45]100.100
合计1001.00
(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图,再根据频率分布直方图估计这507个画师中年龄在[30,35)岁的人数(结果取整数);
(Ⅱ)在抽出的100名画师中按年龄再采用分层抽样法抽取20人参加上海世博会深圳馆志愿者活动,其中选取2名画师担任解说员工作,记这2名画师中“年龄低于30岁”的人数为ξ,求ξ的分布列及数学期望.
查看答案
已知manfen5.com 满分网manfen5.com 满分网,设manfen5.com 满分网
(1)求函数f(x)的最小正周期及其单调递增区间;
(2)若b、c分别是锐角△ABC的内角B、C的对边,且manfen5.com 满分网manfen5.com 满分网,试求△ABC的面积S.
查看答案
已知在三棱锥T-ABC中,TA,TB,TC两两垂直,T在地面ABC上的投影为D,给出下列命题:
①TA⊥BC,TB⊥AC,TC⊥AB;
②△ABC是锐角三角形;
manfen5.com 满分网
manfen5.com 满分网(注:S△ABC表示△ABC的面积)
其中正确的是    (写出所有正确命题的编号). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.