满分5 >
高中数学试题 >
设P={x|x<1},Q={x|x2<4},则P∩Q( ) A.{x|-1<x<...
设P={x|x<1},Q={x|x2<4},则P∩Q( )
A.{x|-1<x<2}
B.{x|-3<x<-1}
C.{x|1<x<-4}
D.{x|-2<x<1}
考点分析:
相关试题推荐
设函数f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x-4|>m对一切实数x均成立,求m的取值范围.
查看答案
已知曲线C
1的极坐标方程为P=6cosθ,曲线C
2的极坐标方程为θ=
(p∈R),曲线C
1,C
2相交于A,B两点.
(Ⅰ)把曲线C
1,C
2的极坐标方程转化为直角坐标方程;
(Ⅱ)求弦AB的长度.
查看答案
如图,已已知AB圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求证:C是劣弧BD的中点;
(Ⅱ)求证:BF=FG.
查看答案
抛物线P:x
2=2py上一点Q(m,2)到抛物线P的焦点的距离为3,A、B、C、D为抛物线的四个不同的点,其中A、D关于y轴对称,D(x
,y
),B(x
1,y
1),C(x
2,y
2),-x
<x
1<x
<x
2,直线BC平行于抛物线P的以D为切点的切线.
(1)求p的值;
(2)证明:∠BAC的角平分线在直线AD上;
(3)D到直线AB、AC的距离分别为m、n,且m+n=
,△ABC的面积为48,求直线BC的方程.
查看答案
已知f(x)=xlnx
(1)求
的单调区间;
(2)证明:当x≥1时,2x-e≤f(x)
恒成立.
查看答案