先求出其导函数,利用导函数求出其单调区间,进而找到其极大值f(2kπ+π)=e2kπ+π[sin(2kπ+π)-cos(2kπ+π)]=e2kπ+π,再利用数列的求和方法来求函数f(x)的各极大值之和即可.
【解析】
因为函数f(x)=ex(sinx-cosx),
所以f'(x)=(ex)'(sinx-cosx)+ex(sinx-cosx)'=2exsinx,
∴x∈(2kπ,2kπ+π)时原函数递增,x∈(2kπ+π,2kπ+2π)时,函数递减.
故当x=2kπ+π时,f(x)取极大值,
其极大值为f(2kπ+π)=e2kπ+π[sin(2kπ+π)-cos(2kπ+π)]=e2kπ+π.
又0≤x≤2011π,
∴函数f(x)的各极大值之和S=eπ+e3π+e5π+…+e2009π==.
故选:A.