满分5 >
高中数学试题 >
已知全集U={1,2,3,4,5},A={1,2,4},∁UB={4,5},则A...
已知全集U={1,2,3,4,5},A={1,2,4},∁UB={4,5},则A∩B=( )
A.{1,2}
B.{4}
C.{1,2,3}
D.{3,5}
考点分析:
相关试题推荐
曲线C上任一点到点E(-4,0),F(4,0)的距离的和为12,C与x轴的负半轴、正半轴依次交于A,B两点,点P在曲线C上且位于x轴上方,满足
.
(1)求曲线C的方程;
(2)求点P的坐标;
(3)以曲线C的中心O为圆心,AB为直径作圆O,是否存在过点P的直线l使其被圆O所截的弦MN长为
,若存在,求直线l的方程;若不存在,请说明理由.
查看答案
设数列{a
n},{b
n}满足a
1=b
1=6,a
2=b
2=4,a
3=b
3=3,且数列{a
n+1-a
n}(n∈N
+)是等差数列,数列{b
n-2}(n∈N
+)是等比数列.
(1)求数列{a
n}和{b
n}的通项公式;
(2)是否存在k∈N
+,使
,若存在,求出k,若不存在,说明理由.
查看答案
已知函数
,F'(-1)=0.
(1)若F(x)在x=1处取得极小值-2,求函数F(x)的单调区间;
(2)令f(x)=F'(x),若f′(x)>0的解集为A,且满足A∪(0,1)=(0,+∞),求
的取值范围.
查看答案
如图,所有棱长都为2的正三棱柱BCD-B′C′D′,四边形ABCD是菱形,其中E为BD的中点.
(1)求证:C′E∥面AB′D′;
(2)求证:面ACD′⊥面BDD′;
(3)求四棱锥B′-ABCD与D′-ABCD的公共部分体积.
查看答案
为了解某班学生喜爱打篮球是否与性别有关,对此班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,A
1,A
2,A
3,A
4,A
5还喜欢打羽毛球,B
1,B
2,B
3还喜欢打乒乓球,C
1,C
2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B
1和C
1不全被选中的概率.
下面的临界值表供参考:
p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中n=a+b+c+d)
查看答案