满分5 > 高中数学试题 >

如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,...

manfen5.com 满分网如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(1)证明:EM⊥BF;
(2)求平面BEF与平面ABC所成的锐二面角的余弦值.
(1)根据线面垂直得到线与线垂直,根据直径所对的圆周角是直角,得到两个三角形是等腰直角三角形,有线面垂直得到结果. (2)做出辅助线,延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.,做出∠FHC为平面BEF与平面ABC所成的二面角的平面角,求出平面角. 【解析】 (1)证明:∵EA⊥平面ABC,BM⊂平面ABC,∴EA⊥BM. 又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE, 而EM⊂平面ACFE,∴BM⊥EM.∵AC是圆O的直径,∴∠ABC=90°. 又∵∠BAC=30°,AC=4,∴,AM=3,CM=1.∵EA⊥平面ABC,FC∥EA, ∴FC⊥平面ABC.∴△EAM与△FCM都是等腰直角三角形. ∴∠EMA=∠FMC=45°.∴∠EMF=90°,即EM⊥MF(也可由勾股定理证得). ∵MF∩BM=M,∴EM⊥平面MBF. 而BF⊂平面MBF,∴EM⊥BF. (2)延长EF交AC于G,连BG,过C作CH⊥BG,连接FH.由(1)知FC⊥平面ABC,BG⊂平面ABC,∴FC⊥BG. 而FC∩CH=C,∴BG⊥平面FCH.∵FH⊂平面FCH,∴FH⊥BG,∴∠FHC为平面BEF与平面ABC所成的 二面角的平面角.(8分) 在Rt△ABC中,∵∠BAC=30°,AC=4, ∴. 由,得GC=2.∵. 又∵,∴,则.(12分) ∴△FCH是等腰直角三角形,∠FHC=45°.∴平面BEF与平面ABC所成的锐二面角的余弦值为.
复制答案
考点分析:
相关试题推荐
第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.

manfen5.com 满分网 查看答案
己知在锐角△ABC中,角A、B、C的对边分别为a、b、c,且tanA=manfen5.com 满分网
(I )求角A大小;
(II)当a=manfen5.com 满分网时,求B的取值范围和b2+c2的取值范围.
查看答案
(优选法选做题)那霉素发酵液生物测定,一般都规定培养温度为(37±1)°C,培养时间在16小时以上,某制药厂为了缩短时间,决定优选培养温度,试验范围固定在29~50°C,精确度要求±1°C,用分数法安排实验,令第一试点在t1处,第二试点在t2处,则t1+t2=    查看答案
(不等式选做题)已知函数f(x)=|2x+1|,g(x)=|x|+a.若存在x∈R,使得f(x)≤g(x)成立,则实数a的取值范围为    查看答案
(坐标系与参数方程选做题)已知圆C的圆心为manfen5.com 满分网,半径为5,直线manfen5.com 满分网被圆截得的弦长为8,则α=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.