满分5 > 高中数学试题 >

已知函数. (Ⅰ)求f(x)的极值; (Ⅱ)若函数f(x)的图象与函数g(x)=...

已知函数manfen5.com 满分网
(Ⅰ)求f(x)的极值;
(Ⅱ)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,求实数a的取值范围.
(Ⅰ)由函数求导,令f'(x)=0,求出根,分析其两侧导数的符号,确定函数的极值; (Ⅱ)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e2]上有公共点,转化为求函数f(x)在区间(0,e2]上的值域,根据(Ⅰ)分类讨论函数在区间(0,e2]是的单调性,确定函数f(x)的最值. 【解析】 (Ⅰ)f(x)的定义域为(0,+∞),f'(x)= 令f'(x)=0得x=e1-a 当x∈(0,e1-a)时,f'(x)>0,f(x)是增函数 当x∈(e1-a,+∞)时,f'(x)<0,f(x)是减函数 ∴f(x)在x=e1-a处取得极大值,f(x)极大值=f(e1-a)=ea-1 (Ⅱ)(i)当e1-a<e2时,a>-1时,由(Ⅰ)知f(x)在(0,e1-a)上是增函数,在(e1-a,e2]上是减函数 ∴f(x)max=f(e1-a)=ea-1 又当x=e-a时,f(x)=0,当x∈(0,e-a]时f(x)<0. 当x∈(e-a,e2]时,f(x)∈(0,ea-1],所以f(x)与图象g(x)=1的图象在(0,e2]上有公共点,等价于ea-1≥1 解得a≥1,又a>-1,所以a≥1 (ii)当e1-a≥e2即a≤-1时,f(x)在(0,e2]上是增函数, ∴f(x)在(0,e2]上的最大值为f(e2)= 所以原问题等价于,解得a≥e2-2. 又∵a≤-1,∴无解 综上实数a的取值范围是a≥1
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1B1C1均为60°,平面AA1C1C⊥平面ABCD.
(I)求证:BD⊥AA1
(II)求二面角D-AA1-C的余弦值;
(III)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.
查看答案
一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分.
(Ⅰ)若从袋子里一次随机取出3个球,求得4分的概率;
(Ⅱ)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分ξ的概率分布列及数学期望.
查看答案
ABC的面积S满足manfen5.com 满分网≤S≤3,且manfen5.com 满分网manfen5.com 满分网=6,AB与BC的夹角为θ.
(1)求θ的取值范围.
(2)求函数f(θ)=sin2θ+2sinθcosθ+3cos2θ的最小值.
查看答案
给出下列四个命题:①命题“∀x∈R,x2≥0”的否定是“∃x∈R,x2≤0”;②若a,b∈[0,1],则不等式manfen5.com 满分网成立的概率是manfen5.com 满分网;③函数y=log2(x2-ax+2)在[2,+∞)上恒为正,则实数a的取值范围是manfen5.com 满分网.其中真命题的序号是    .(填上所有真命题的序号) 查看答案
右边程序框图的程序执行后输出的结果是    
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.