如图,O是坐标原点,已知三点E(0,3),F(0,1),G(0,-1),直线L:y=-1,M是直线L上的动点,H.P是坐标平面上的动点,且
.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)过点E的直线m与点P的轨迹交于相异两点A.B,设向量
夹角为θ,且
,求直线m斜率的取值范围.
考点分析:
相关试题推荐
已知函数
.
(Ⅰ)求f(x)的极值;
(Ⅱ)若函数f(x)的图象与函数g(x)=1的图象在区间(0,e
2]上有公共点,求实数a的取值范围.
查看答案
如图,棱柱ABCD-A
1B
1C
1D
1的所有棱长都等于2,∠ABC和∠A
1B
1C
1均为60°,平面AA
1C
1C⊥平面ABCD.
(I)求证:BD⊥AA
1(II)求二面角D-AA
1-C的余弦值;
(III)在直线CC
1上是否存在点P,使BP∥平面DA
1C
1,若存在,求出点P的位置,若不存在,请说明理由.
查看答案
一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分.
(Ⅰ)若从袋子里一次随机取出3个球,求得4分的概率;
(Ⅱ)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分ξ的概率分布列及数学期望.
查看答案
ABC的面积S满足
≤S≤3,且
•
=6,AB与BC的夹角为θ.
(1)求θ的取值范围.
(2)求函数f(θ)=sin
2θ+2sinθcosθ+3cos
2θ的最小值.
查看答案
给出下列四个命题:①命题“∀x∈R,x
2≥0”的否定是“∃x∈R,x
2≤0”;②若a,b∈[0,1],则不等式
成立的概率是
;③函数y=log
2(x
2-ax+2)在[2,+∞)上恒为正,则实数a的取值范围是
.其中真命题的序号是
.(填上所有真命题的序号)
查看答案