满分5 > 高中数学试题 >

如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1. (Ⅰ)...

如图,在直三棱柱ABC-A1B1C1中,平面A1BC⊥侧面A1ABB1
(Ⅰ)求证:AB⊥BC;
(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θ与φ的大小关系,并予以证明.

manfen5.com 满分网
本小题主要考查直棱柱、直线与平面所成角、二面角和线面关系等有关知识,同时考查空间想象能力和推理能力. (1)若要证明AB⊥BC,可以先证明AB⊥平面BC1,由线面垂直的性质得到线线垂直. (2)要判断直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ的大小关系,可以先做出二面角的平面角,再根据三角函数的单调性进行解答.也可以根据(1)的结论,以以点B为坐标原点,以BC、BA、BB1所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系利用空间向量,求出两个角的正弦值,再根据三角函数的单调性解答. 【解析】 (Ⅰ)证明:如图,过点A在平面A1ABB1内作AD⊥A1B于D, 由平面A1BC⊥侧面A1ABB1,且平面A1BC∩侧面A1ABB1=A1B,得 AD⊥平面A1BC,又BC⊂平面A1BC, 所以AD⊥BC. 因为三棱柱ABC-A1B1C1是直三棱柱, 则AA1⊥底面ABC, 所以AA1⊥BC. 又AA1∩AD=A,从而BC⊥侧面A1ABB1, 又AB⊂侧面A1ABB1,故AB⊥BC. (Ⅱ)解法1:连接CD,则由(Ⅰ)知∠ACD是直线AC与平面A1BC所成的角,∠ABA1是二面角A1-BC-A的平面角,即∠ACD=θ,∠ABA1=φ, 于是在Rt△ADC中,,在Rt△ADB中,, 由AB<AC,得sinθ<sinφ,又,所以θ<φ, 解法2:由(Ⅰ)知,以点B为坐标原点,以BC、BA、BB1所在的直线分 别为x轴、y轴、z轴,建立如图所示的空间直角坐标系, 设AA1=a,AC=b, AB=c,则B(0,0,0),A(0,c,0),, 于是,. 设平面A1BC的一个法向量为n=(x,y,z), 则由.得. 可取n=(0,-a,c),于是与n的夹角β为锐角,则β与θ互为余角.,, 所以, 于是由c<b,得, 即sinθ<sinφ,又,所以θ<φ,
复制答案
考点分析:
相关试题推荐
厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.
(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;
(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及期望Eξ,并求该商家拒收这批产品的概率.
查看答案
如图,在平面直角坐标系xoy中,以Ox轴为始边做两个锐角α,β,且α,β的终边依次与单位圆O相交于M、N两点,已知M、N的横坐标分别为manfen5.com 满分网manfen5.com 满分网
(I )求α+β的值;
(II)在△ABC中,A,B为锐角,A=α,B=β,角A、B、C所对的边分别为a、b、c,若manfen5.com 满分网=(a+1,1),manfen5.com 满分网=(b+manfen5.com 满分网,1),当manfen5.com 满分网manfen5.com 满分网时,求a b、c的值.

manfen5.com 满分网 查看答案
给出下列5个命题:
①0<a≤manfen5.com 满分网是函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为单调减函数的充要条件;
②如图所示,“嫦娥探月卫星”沿地月转移轨道飞向月球,在月球附近一点P进入以月球球心F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道III绕月飞行,若用2Cl和2c2分别表示摘圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴的长,则有c1a2>a1c2
③函数y=f(x)与它的反函数y=f-1(x)的图象若相交,则交点必在直线y=x上;
④己知函数f(x)=loga(1-ax)在(O,1)上满足,f′(x)>0,贝Umanfen5.com 满分网>1+a>manfen5.com 满分网
⑤函数f(x)=manfen5.com 满分网(x≠kπ+manfen5.com 满分网),k∈Z,/为虚数单位)的最小值为2;
其中所有真命题的代号是   
manfen5.com 满分网 查看答案
如图,设A、B、C、D为球O上四点,若AB、AC、AD两两互相垂直,且manfen5.com 满分网,则OD与平面ABC所成的角为    
manfen5.com 满分网 查看答案
已知双曲线manfen5.com 满分网的左、右焦点分别为F1,F2,其一条渐近线方程为y=x,点manfen5.com 满分网在该双曲线上,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.