满分5 > 高中数学试题 >

据统计,从5月1日到5月7号参观上海世博会的人数如表所示: 日期 1日 2日 3...

据统计,从5月1日到5月7号参观上海世博会的人数如表所示:
日期1日2日3日4日5日6日7日
人数(万)2123131591214
其中,5月1日到5月3日为指定参观日,5月4日到5月7日为非指定参观日.
(Ⅰ)把这7天的参观人数看成一个总体,求该总体的平均数(精确到0.1)
(Ⅱ)用简单随机抽样方法从非指定参观日中抽取2天,它们的参观人数组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过2万的概率.
(1)根据所给的7个数据,利用求平均数的公式,求出这组数据的平均数. (II)本题是一个古典概型,试验发生包含的事件是从非指定参观日中抽取2天可能的基本事件可以通过列举得到共有6种结果,满足条件的事件是样本平均数与总体平均数之差的绝对值不超过2万,列举出来,得到概率. 【解析】 (Ⅰ)总体平均数为 (Ⅱ)由题意知本题是一个古典概型, 设A表示事件“样本平均数与总体平均数之差的绝对值不超过2万” 试验发生包含的事件是从非指定参观日中抽取2天可能的基本事件有:(15,9), (15,12),(15,14),(9,12),(9,14),(12,14)共有6个结果, 满足条件的事件A包含的基本事件有:(15,12),(15,14),共2个. ∴根据古典概型概率公式得到
复制答案
考点分析:
相关试题推荐
一个袋中装有大小相同的黑球和红球,已知袋中共有5个球,从中任意摸出1个球,得到黑球的概率是manfen5.com 满分网.现将黑球和红球分别从数字1开始顺次编号.
(Ⅰ)若从袋中有放回地取出两个球,每次只取出一个球,求取出的两个球上编号为相同数字的概率.
(Ⅱ)若从袋中取出两个球,每次只取出一个球,并且取出的球不放回.求取出的两个球上编号之积为奇数的概率.
查看答案
已知manfen5.com 满分网
(Ⅰ)若x是从-1,0,1,2四个数中任取的一个数,y是从-1,0,1三个数中任取的一个数,求manfen5.com 满分网的概率.
(Ⅱ)若x是从区间[-1,2]中任取的一个数,y是从区间[-1,1]中任取的一个数,求manfen5.com 满分网的夹角是锐角的概率.
查看答案
袋子里有大小相同的3个红球和4个黑球,今从袋子里随机取球.
(Ⅰ)若有放回地取3次,每次取1个球,求取出1个红球2个黑球的概率;
(Ⅱ)若无放回地取3次,每次取1个球,
①求在前2次都取出红球的条件下,第3次取出黑球的概率;
②求取出的红球数X 的分布列和数学期望.
查看答案
某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段、现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段)频数(人数)频率
[60,70)0.16
[70,80)22
[80,90)140.28
[90,100)
合计501
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖.如果前三道题都答错,就不再答第四题.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于80分的频率的值相同.
①求该同学恰好答满4道题而获得一等奖的概率;
②记该同学决赛中答题个数为X,求X的分布列及数学期望.
查看答案
数列{an}满足a1=2,an+1=(λ-3)an+2n,(n=1,2,3…)
(Ⅰ) 当a2=-1时,求λ及a3
(Ⅱ)是否存在实数λ,使得数列{an}为等差数列或等比数列?若存在,求出其通项公式,若不存在,说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.