已知圆F:x
2+(y-1)
2=1,动圆P与定圆F在x轴的同侧且与x轴相切,与定圆F相外切.
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)已知M(0,2),是否存在垂直于y轴的直线m,使得m被以PM为直径的圆截得的弦长恒为定值?若存在,求出m的方程;若不存在,说明理由.
考点分析:
相关试题推荐
如图,椭圆
的左顶点、右焦点分别为A,F,直线l的方程为x=9,N为l上一点,且在x轴的上方,AN与椭圆交于M点
(1)若M是AN的中点,求证:MA⊥MF.
(2)过A,F,N三点的圆与y轴交于P,Q两点,求|PQ|的范围.
查看答案
据统计,从5月1日到5月7号参观上海世博会的人数如表所示:
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人数(万) | 21 | 23 | 13 | 15 | 9 | 12 | 14 |
其中,5月1日到5月3日为指定参观日,5月4日到5月7日为非指定参观日.
(Ⅰ)把这7天的参观人数看成一个总体,求该总体的平均数(精确到0.1)
(Ⅱ)用简单随机抽样方法从非指定参观日中抽取2天,它们的参观人数组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过2万的概率.
查看答案
一个袋中装有大小相同的黑球和红球,已知袋中共有5个球,从中任意摸出1个球,得到黑球的概率是
.现将黑球和红球分别从数字1开始顺次编号.
(Ⅰ)若从袋中有放回地取出两个球,每次只取出一个球,求取出的两个球上编号为相同数字的概率.
(Ⅱ)若从袋中取出两个球,每次只取出一个球,并且取出的球不放回.求取出的两个球上编号之积为奇数的概率.
查看答案
已知
,
(Ⅰ)若x是从-1,0,1,2四个数中任取的一个数,y是从-1,0,1三个数中任取的一个数,求
的概率.
(Ⅱ)若x是从区间[-1,2]中任取的一个数,y是从区间[-1,1]中任取的一个数,求
的夹角是锐角的概率.
查看答案
袋子里有大小相同的3个红球和4个黑球,今从袋子里随机取球.
(Ⅰ)若有放回地取3次,每次取1个球,求取出1个红球2个黑球的概率;
(Ⅱ)若无放回地取3次,每次取1个球,
①求在前2次都取出红球的条件下,第3次取出黑球的概率;
②求取出的红球数X 的分布列和数学期望.
查看答案