先由椭圆方程求得长半轴,而△ABF2的周长为AB+BF2+AF2,由椭圆的定义求解即可.根据△ABF2的面积=△AF1F2的面积+△BF1F2的面积求得△ABF2的面积=|y2-y1|进而根据内切圆半径和三角形周长求得其面积,建立等式求得|y2-y1|的值.
【解析】
根据椭圆的定义AF1+AF2=2a,BF1+BF2=2a
∵AF1+BF1=AB,∴△ABF2的周长为4a=16;
△ABF2的面积=△AF1F2的面积+△BF1F2的面积=|y2-y1|(A、B在x轴的上下两侧)
又△ABF2的面积=4,∴|y2-y1|=
故答案为16,