满分5 > 高中数学试题 >

某学生对函数f(x)=2xcosx进行研究,得到如下四个命题: ①函数f(x)在...

某学生对函数f(x)=2xcosx进行研究,得到如下四个命题:
①函数f(x)在[-π,0]上单调递增,在[0,π]上单调递减;
②存在常数M>0,使得|f(x)|≤M|x|对一切实数都成立;
③(manfen5.com 满分网,0)是函数f(x)图象的一个对称中心;
④函数f(x)图象关于直线x=π对称.
其中真命题的个数为( )
A.1
B.2
C..3
D.4
研究函数f(x)得单调性可知函数f(x)为奇函数,结合奇函数的对称区间上的单调性可判断(1);根据y=cosx是有界函数可判断(2);根据函数基本性质:对称性的应用可判断(3)(4). 【解析】 因为f(x)=2xcosx 所以,f(-x)=-2xcos(-x)=-2xcosx=-f(x) 则函数f(x)是奇函数,在对称的区间上单调性相同,故(1)错误 (2)因为|cosx|≤1,令M=2即得|f(x)|≤M|x|成立,故(2)正确 (3)因为f(π+x)+f(π-x)=-(π+2x)sinx+(π-2x)sinx=-4xsinx≠0,所以点(π,0)不是函数y=f(x)图象的一个对称中心,故(3)错误 (4)因为f(π+x)=2(π+x)cosx,f(π-x)=2(π-x)cosx,所以f(π+x)≠f(π-x),则函数y=f(x)图象不关于直线x=π对称,故(4)错误 故选A
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,设P、Q为△ABC内的两点,且manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网manfen5.com 满分网,则△ABP的面积与△ABQ的面积之比为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
manfen5.com 满分网函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,manfen5.com 满分网)的图象如图所示,为了得到y=cos2x的图象,则只要将f(x)的图象( )
A.向左平移manfen5.com 满分网个单位长度
B.向右平移manfen5.com 满分网个单位长度
C.向左平移manfen5.com 满分网个单位长度
D.向右平移manfen5.com 满分网个单位长度
查看答案
防疫站有A、B、C、D四名内科医生和E、F两名儿科医生,现将他们分成两个3人小组分别派往甲、乙两地指导疾病防控.两地都需要既有内科医生又有儿科医生,而且A只能去乙地.则不同的选派方案共有( )
A.6种
B.8种
C.12种
D.16种
查看答案
一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为①长方形;②正方形;③圆;④椭圆.
其中正确的是( )
manfen5.com 满分网
A.①②
B.②③
C.③④
D.①④
查看答案
manfen5.com 满分网如图,程序框图所进行的求和运算是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.