满分5 > 高中数学试题 >

已知函数f(x)=log3是f(x)图象上的两点,横坐标为的点P满足2(O为坐标...

已知函数f(x)=log3manfen5.com 满分网是f(x)图象上的两点,横坐标为manfen5.com 满分网的点P满足2manfen5.com 满分网(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若manfen5.com 满分网,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=manfen5.com 满分网,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.
(1)先用表示出,再由P是MN的中点可得到x1+x2=1,然后代入到y1+y2=f(x1)+f(x2)结合对数的运算法则即可得到y1+y2=1,得证. (2)先由(Ⅰ)知当x1+x2=1时,y1+y2=1,然后对进行倒叙相加即可得到,再结合x1+x2=1时,y1+y2=1可得到. (3)将(2)中的.代入到an的表达式中进行整理当n≥2时满足.,然后验证当n=1时满足,再代入到Tn中进行求值,当Tn<m(Sn+1+1)对一切n∈N*都成立时可转化为恒成立,再由均值不等式可求出m的范围. 【解析】 (1)由已知可得,, ∴P是MN的中点,有x1+x2=1. ∴y1+y2=f(x1)+f(x2) = = = = =. (2)【解析】 由(Ⅰ)知当x1+x2=1时,y1+y2=f(x1)+f(x1)=1 , , 相加得 = =n-1 ∴. (3)【解析】 当n≥2时, . 又当n=1时, . ∴. =. 由于Tn<m(Sn+1+1)对一切n∈N*都成立, ∵,当且仅当n=2时,取“=”, ∴ 因此. 综上可知,m的取值范围是.
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的中心、上顶点、右焦点构成面积为1的等腰直角三角形.
(1)求椭圆的方程;
(2)若A、B分别是椭圆的左、右顶点,点M满足MB⊥AB,连接AM,交椭圆于P点,试问:在x轴上是否存在异于点A的定点C,使得以MP为直径的圆恒过直线BP、MC的交点,若存在,求出C点的坐标;若不存在,说明理由.
查看答案
已知函数f(x)的导函数f(x)=-3x2+6x+9.
(1)求函数f(x)的单调区间;
(2)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
查看答案
某公司的“咨询热线”电话共有6条外线,经长期统计发现,每天在电话高峰期内,外线电话同时打入的概率如下表(记电话同时打入数为ξ):
ξ123456
P0.130.350.270.140.080.020.01
(I)求ξ的数学期望Eξ;
(II)如果公司每天只安排两位接线员(一位接线员一次只能接一个电话),
①求每天电话高峰期内至少有一路电话不能一次接通的概率(用最简分数表示);
②公司董事会决定,把“一周五个工作日中至少有四天在电话高峰期内电话都能一次接通”的概率视作公司的“美誉度”,如果“美誉度”低于0.8,就增派接线员,请你帮助计算一下,该公司是否需要增派接线员.
查看答案
如图所示,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=manfen5.com 满分网AP=2,D是AP的中点,E,F,G分别为PC,PD,CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD.
(1)求证:AP∥平面EFG;
(2)求二面角G-EF-D的大小.
manfen5.com 满分网
查看答案
已知manfen5.com 满分网manfen5.com 满分网,其中manfen5.com 满分网,设函数manfen5.com 满分网
(1)求函数f(x)的值域;        
(2)若f(x)=5,求x的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.