满分5 > 高中数学试题 >

已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b...

已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上.
(1)求a1和a2的值;
(2)求数列{an},{bn}的通项an和bn
(3)设cn=an•bn,求数列{cn}的前n项和Tn
(1)先利用an是Sn与2的等差中项把1代入即可求a1,再把2代入即可求a2的值; (2)利用Sn=2an-2,可得Sn-1=2an-1-2,两式作差即可求数列{an}的相邻两项之间的关系,找到规律即可求出通项;对于数列{bn},直接利用点P(bn,bn+1)在直线x-y+2=0上,代入得数列{bn}是等差数列即可求通项; (3)先把所求结论代入求出数列{cn}的通项,再利用数列求和的错位相减法即可求出其各项的和. 【解析】 (1)∵an是Sn与2的等差中项 ∴Sn=2an-2∴a1=S1=2a1-2,解得a1=2 a1+a2=S2=2a2-2,解得a2=4 (2)∵Sn=2an-2,Sn-1=2an-1-2, 又Sn-Sn-1=an,n≥2 ∴an=2an-2an-1, ∵an≠0, ∴=2(n≥2),即数列{an}是等比数列,∵a1=2,∴an=2n ∵点P(bn,bn+1)在直线x-y+2=0上,∴bn-bn+1+2=0, ∴bn+1-bn=2,即数列{bn}是等差数列,又b1=1,∴bn=2n-1, (3)∵cn=(2n-1)2n ∴Tn=a1b1+a2b2+anbn=1×2+3×22+5×23++(2n-1)2n, ∴2Tn=1×22+3×23++(2n-3)2n+(2n-1)2n+1 因此:-Tn=1×2+(2×22+2×23++2×2n)-(2n-1)2n+1, 即:-Tn=1×2+(23+24++2n+1)-(2n-1)2n+1, ∴Tn=(2n-3)2n+1+6
复制答案
考点分析:
相关试题推荐
已知曲线C:manfen5.com 满分网+x2=1;
(1)由曲线C上任一点E向x轴作垂线,垂足为F,点P在manfen5.com 满分网上,且 manfen5.com 满分网.问:点P的轨迹可能是圆吗?请说明理由;
(2)如果直线l的斜率为manfen5.com 满分网,且过点M(0,-2),直线l交曲线C于A,B两点,又manfen5.com 满分网,求曲线C的方程.
查看答案
manfen5.com 满分网某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.
(Ⅰ)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(Ⅱ)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
附:K2=manfen5.com 满分网(此公式也可写成x2=manfen5.com 满分网
P(k2≥K)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案
如图,在Rt△ABC中,AB=BC=4,点E在线段AB上,过点E作EF∥BC交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=30°.
(I )求证:EF丄PB;
(II )试问:当点E在何处时,四棱锥P-EFCB的侧面PEB的面积最大?并求此时四棱锥P-EFCB的体积
manfen5.com 满分网
查看答案
在△ABC中,角A、B、C所对的边分别是a、b、c,且manfen5.com 满分网(其中S△ABC为△ABC的面积).
(1)求sinA的值;
(2)若b=2,△ABC的面积S△ABC=3,求a的值.
查看答案
(几何证明选讲)如图,半径是manfen5.com 满分网的⊙O中,AB是直径,MN是过点A的⊙O的切线,AC,BD相交于点P,且∠DAN=30°,CP=2,PA=9,又PD>PB,则线段PD的长为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.