满分5 > 高中数学试题 >

已知函数f(x)=x2ln|x|, (Ⅰ)判断函数f(x)的奇偶性; (Ⅱ)求函...

已知函数f(x)=x2ln|x|,
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若关于x的方程f(x)=kx-1有实数解,求实数k的取值范围.
(Ⅰ)根据函数f(x)的解析式,求得f(-x),看f(x)与f(x)的关系式,进而判断函数的奇偶性. (Ⅱ)先看当x>0时,根据导函数f'(x)大于0或小于0时的f(x)的单调区间,再根据函数的奇偶性判断求得其它的单调区间. (Ⅲ)要使方程f(x)=kx-1有实数解,即要使函数y=f(x)的图象与直线y=kx-1有交点,先看当k>0时,用导函数求出当直线y=kx-1与f(x)的图象相切时k的值,再根据对称性求出k<0时直线y=kx-1与f(x)的图象相切时k的值,进而求出f(x)=kx-1有实数解,求实数k的取值范围. 【解析】 (Ⅰ)函数f(x)的定义域为{x|x∈R且x≠0} f(-x)=(-x)2ln|-x|=x2lnx=f(x) ∴f(x)为偶函数 (Ⅱ)当x>0时, 若,则f'(x)<0,f(x)递减; 若,则f'(x)>0,f(x)递增. 递增区间是和; 递减区间是和. (Ⅲ)要使方程f(x)=kx-1有实数解,即要使函数y=f(x)的图象与直线y=kx-1有交点. 函数f(x)的图象如图. 先求当直线y=kx-1与f(x)的图象相切时k的值. 当k>0时,f'(x)=x•(2lnx+1) 设切点为P(a,f(a)),则切线方程为y-f(a)=f'(a)(x-a), 将x=0,y=-1代入,得-1-f(a)=f'(a)(-a) 即a2lna+a2-1=0(*) 显然,a=1满足(*) 而当0<a<1时,a2lna+a2-1<0, 当a>1时,a2lna+a2-1>0 ∴(*)有唯一解a=1 此时k=f'(1)=1 再由对称性,k=-1时,y=kx-1也与f(x)的图象相切, ∴若方程f(x)=kx-1有实数解,则实数k的取值范围是(-∞,-1]∪[1,+∞).
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网,集合M={x|f(x)<0},P={x|f′(x)>0},若M⊊P,则求实数a的取值范围.
查看答案
已知manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网
(1)将f(x)写成Asin(ωx+φ)的形式,并求其图象对称中心的坐标;
(2)如果△ABC的三边a,b,c满足b2=ac,且边b所对的角为x,试求x的范围及此时函数f(x)的值域.
查看答案
某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)=manfen5.com 满分网其中x是仪器的月产量.
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润.)
查看答案
已知命题p:函数y=loga(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立
若p∨q是真命题,求实数a的取值范围.
查看答案
已知△ABC的外接圆的圆心O,BC>CA>AB,则manfen5.com 满分网的大小关系为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.