下面玩掷骰子放球的游戏:若掷出1点,甲盒中放入一球;若掷出2点或是3点,乙盒中放入一球;若掷出4点或5点或6点,丙盒中放入一球!设掷n次后,甲、乙、丙盒内的球数分别为x,y,z
(1)当n=3时,求x、y、z成等差数列的概率;(2)当n=6时,求x、y、z成等比数列的概率;
(3)设掷4次后,甲盒和乙盒中球的个数差的绝对值为ξ,求Eξ.
分析:显然题目描述的是独立重复实验,但不是我们熟悉的两个而是三个,因此需要运用类比方法求解.
考点分析:
相关试题推荐
袋中装有m个红球和n个白球,m≥n≥2,这些红球和白球除了颜色不同以外,其余都相同.从袋中同时取出2个球.
(1)若取出是2个红球的概率等于取出的是一红一白的2个球的概率的整数倍,试证m必为奇数;
(2)在m,n的数组中,若取出的球是同色的概率等于不同色的概率,试求失和m+n≤40的所有数组(m,n).
查看答案
A有一只放有x个红球,y个白球,z个黄球的箱子(x、y、z≥0,且x+y+z=6),B有一只放有3个红球,2个白球,1个黄球的箱子,两人各自从自己的箱子中任取一球比颜色,规定同色时为A胜,异色时为B胜.
(1)用x、y、z表示B胜的概率;(2)当A如何调整箱子中球时,才能使自己获胜的概率最大?
(3)若规定A取红球,白球,黄球而获胜的得分分别为1,2,3分,否则得0分,求A得分的期望的最大值及此时x,y,z的值.
查看答案
甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜.
(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?
(2)在(1)的条件下,求取出的3个球中红球个数的数学期望.
查看答案
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.
查看答案
(1)设函数f(x)=xlnx+(1-x)ln(1-x)(0<x<1),求f(x)的最小值;
(2)设正数
满足
=1,求证:
≥-n.
查看答案