满分5 > 高中数学试题 >

已知函数在x=1处取得极值2. (1)求函数f(x)的表达式; (2)当m满足什...

已知函数manfen5.com 满分网在x=1处取得极值2.
(1)求函数f(x)的表达式;
(2)当m满足什么条件时,函数f(x)在区间(m,2m+1)上单调递增?
(3)若P(x,y)为manfen5.com 满分网图象上任意一点,直线l与manfen5.com 满分网的图象切于点P,求直线l的斜率k的取值范围.
(1)由函数在x=1处取得极值2可得f(x)=2,f′(1)=0求出a和b确定出f(x)即可; (2)令f′(x)>0求出增区间得到m的不等式组求出解集即可; (3)找出直线l的斜率k=f′(x),利用换元法求出k的最小值和最大值即可得到k的范围. 【解析】 (1)因, 而函数在x=1处取得极值2, 所以⇒⇒ 所以; (2)由(1)知, 如图,f(x)的单调增区间是[-1,1], 所以,⇒-1<m≤0, 所以当m∈(-1,0]时,函数f(x)在区间(m,2m+1)上单调递增. (3)由条件知,过f(x)的图形上一点P的切线l的斜率k为:= 令,则t∈(0,1],此时, 根据二次函数的图象性质知: 当时,kmin=,当t=1时,kmax=4 所以,直线l的斜率k的取值范围是.
复制答案
考点分析:
相关试题推荐
已知定义在正实数集上的函数manfen5.com 满分网,g(x)=3a2lnx+b,其中a>0,设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同.
(I)用a表示b,并求b的最大值;
(II)求证:f(x)≥g(x)(x>0).
查看答案
如图,已知中心在原点O、焦点在x轴上的椭圆C的离心率为manfen5.com 满分网,点A、B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,求manfen5.com 满分网manfen5.com 满分网的最小值.

manfen5.com 满分网 查看答案
(理)设椭圆manfen5.com 满分网的两个焦点是F1(-c,0)、F2(c,0)(c>0),且椭圆上存在点M,使manfen5.com 满分网
(1)求实数m的取值范围;
(2)若直线l:y=x+2与椭圆存在一个公共点E,使得|EF1|+|EF2|取得最小值,求此最小值及此时椭圆的方程;
(3)是否存在斜率为k(k≠0)的直线l,与条件(Ⅱ)下的椭圆交于A、B两点,使得经过AB的中点Q及N(0,-1)的直线NQ满足manfen5.com 满分网?若存在,求出k的取值范围;若不存在,说明理由.
查看答案
(文)已知数列{an}的相邻两项an,an+1是关于x的方程x2-2nx+bn=0(n∈N*)的两根,且a1=1.
(1)求数列和{bn}的通项公式;  
(2)设Sn是数列{an}的前n项和,问是否存在常数λ,使得bn-λSn>0对任意n∈N*都成立,若存在,求出λ的取值范围; 若不存在,请说明理由.
查看答案
设数列{an}的各项都是正数,a1=1,manfen5.com 满分网,bn=an2+an
(1)求数列{bn}的通项公式;
(2)求数列{an}的通项公式;
(3)求证:manfen5.com 满分网<1.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.