满分5 > 高中数学试题 >

给出下列命题 ①若直线l与平面α内的一条直线平行,则l∥α; ②若平面α⊥平面β...

给出下列命题
①若直线l与平面α内的一条直线平行,则l∥α;
②若平面α⊥平面β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面β;
③∃x∈(3,+∞),x∉(2,+∞);
④已知a∈R,则“a<2”是“a2<2a”的必要不充分条件.
其中正确命题的个数是( )
A.4
B.3
C.2
D.1
对于①,考虑直线与平面平行的判定定理;对于②,考虑平面与平面垂直的性质定理;对于③,考虑两个集合间的包含关系;对于④,考虑充要条件中条件与结论的互推关系. 【解析】 对于①,直线与平面平行的判定定理中的条件是直线在平面外,而本命题没有,故错误; 对于②,符合平面与平面垂直的性质定理,故正确; 对于③,考虑两个集合间的包含关系(2,+∞)⊊(3,+∞),而x∈(3,+∞),比如x=4,则4∈(2,+∞),故错误; 对于④,由a2<2a可以得到:0<a<2,一定推出a<2,反之不一定成立,故“a<2”是“a2<2a”的必要不充分条件,此命题正确. 综上知②④中的命题正确, 故选C.
复制答案
考点分析:
相关试题推荐
不等式-x2+|x|+2<0的解集是( )
A.{x|-2<x<2}
B.{x|x<-2或x>2}
C.{x|-1<x<1}
D.{x|x<-1或x>1}
查看答案
在复平面内,复数manfen5.com 满分网对应的点到直线y=x+1的距离是( )
A.manfen5.com 满分网
B.2
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知函数manfen5.com 满分网,g(x)=lnx.
(Ⅰ)如果函数y=f(x)在[1,+∞)上是单调增函数,求a的取值范围;
(Ⅱ)是否存在实数a>0,使得方程manfen5.com 满分网在区间manfen5.com 满分网内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.
查看答案
在平面直角坐标系中,已知点manfen5.com 满分网,点B在直线manfen5.com 满分网上运动,过点B与l垂直的直线和AB的中垂线相交于点M.
(Ⅰ)求动点M的轨迹E的方程;
(Ⅱ)设点P是轨迹E上的动点,点R,N在y轴上,圆C:(x-1)2+y2=1内切于△PRN,求△PRN的面积的最小值.
查看答案
已知函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(I)求数列{an}的通项公式及Sn的最大值;
(II)令manfen5.com 满分网,其中n∈N*,求{nbn}的前n项和.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.