(1)由题意及平面ABC⊥平面BB1C1C且交线为BC,利用面面垂直的性质定理得AM⊥平面BB1C1C,进而得到线线线垂直,在Rt△B1BM与Rt△MCN中利用条件得到N为C1C四等分点(靠近点C);
(2)由(1)的证明过程知道∠MEN为二面角M-AB1-N的平面角,然后利用三角形解出二面角的大小.
【解析】
(1)连接MA、B1M,过M作MN⊥B1M,且MN交CC1点N,
在正△ABC中,AM⊥BC,
又∵平面ABC⊥平面BB1C1C,
平面ABC∩平面BB1C1C=BC,
∴AM⊥平面BB1C1C,
∵MN⊂平面BB1C1C,
∴MN⊥AM.
∵AM∩B1M=M,
∴MN⊥平面AMB1,∴MN⊥AB1.
∵在Rt△B1BM与Rt△MCN中,
易知∠NMC=∠BB1M,
∴tan∠NMC=,∴NC=tan∠BB1M=,
即N为C1C四等分点(靠近点C).
(2)过点M作ME⊥AB1,垂足为R,连接EN,
由(1)知MN⊥平面AMB1,
∴EN⊥AB1,
∴∠MEN为二面角M-AB1-N的平面角.
∵正三棱柱ABC-A1B1C1,BB1=BC=2,
∴AB1=2.
由AM⊥平面BC1,知AM⊥B1M.
在Rt△AMB1中,ME=,
又MN=,
故在Rt△EMN中,tan∠MEN=,
故二面角M-AB1-N的大小为arctan.