满分5 > 高中数学试题 >

已知数列{an}满足:. (Ⅰ)求数列{an}的通项公式; (Ⅱ)证明:; (Ⅲ...

已知数列{an}满足:manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:manfen5.com 满分网
(Ⅲ)设manfen5.com 满分网,且manfen5.com 满分网,证明:manfen5.com 满分网
(Ⅰ)2n+1an+1-2nan=n,令bn=2n+1an+1-2nan,得2nan=2a1+b1+b2+…+bn-1=,由此能求出数列{an}的通项公式. (Ⅱ)由,可得,2n+1=(1+1)n+1=1+Cn+11+Cn+12+…+Cn+1n-1+Cn+1n+1,所以2n+1>n2+2n+2,由此能证明. (Ⅲ),欲证:.,即证,即ln(1+Tn)-Tn<0.构造函数f(x)=ln(1+x)-x,借助导数能够证明. 【解析】 (Ⅰ)∵2n+1an+1-2nan=n 令bn=2n+1an+1-2nan,∴2nan=2a1+b1+b2+…+bn-1=, ∴,又a1=1成立∴(4分) (Ⅱ)∵,∴ 又当n≥2时,2n+1=(1+1)n+1=1+Cn+11+Cn+12+…+Cn+1n-1+Cn+1n+1 ∴2n+1>1+Cn+11+2Cn+12,∴2n+1>n2+2n+2,而 ∴,又a1=1 故(9分) (Ⅲ) 欲证:.,即证,即ln(1+Tn)-Tn<0. 构造函数f(x)=ln(1+x)-x(x≥0),, ∴f(x)在[0,+∞)上为减函数,f(x)的最大值为f(0)=0, ∴当x>0时,f(x)<0,∴ln(1+Tn)-Tn<0 故不等式.成立.(14分)
复制答案
考点分析:
相关试题推荐
已知a∈R,函数f(x)=manfen5.com 满分网-ax,x∈[0,+∞)
(1)若f(x)是单调函数,求a的取值范围.
(2)若f(x)的值域为(0,1],求a的值.
查看答案
已知A(-2,0)、B(2,0),点C、点D依次满足manfen5.com 满分网
(1)求点D的轨迹方程;
(2)过点A作直线l交以A、B为焦点的椭圆于M、N两点,线段MN的中点到y轴的距离为manfen5.com 满分网,且直线l与点D的轨迹相切,求该椭圆的方程.
查看答案
美国次贷危机引发2008年全球金融动荡,波及中国股市,甲、乙、丙、丁四人打算趁目前股市低迷之际“抄底”,若四人商定在圈定的6只股票中各自随机购买一只(假定购买时每只股票的基本情况完全相同).
(1)求甲、乙、丙、丁四人中至多有两人买到同一只股票的概率;
(2)由于国家采取了积极的救市措施,股市渐趋“回暖”.若某人今天按上一交易日的收盘价20元/股,买入某只股票1000股,且预计今天收盘时,该只股票比上一交易日的收盘价上涨10%(涨停)的概率为0.6.持平的概率为0.2,否则将下跌10%(跌停),求此人今天获利的数学期望(不考虑佣金、印花税等交易费用).
查看答案
如图,在正三棱柱ABC-A1B1C1中,BB1=BC=2,且M是BC的中点,点N在CC1上.
(1)试确定点N的位置,使AB1⊥MN;
(2)当AB1⊥MN时,求二面角M-AB1-N的大小.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网,且函数f(x)的最小正周期为π
(1)求函数f(x)的解析式;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若manfen5.com 满分网,且a+c=4,求边长b.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.