满分5 > 高中数学试题 >

已知f(x)=ax-ln(-x),x∈(-e,0),,其中e是自然常数,a∈R....

已知f(x)=ax-ln(-x),x∈(-e,0),manfen5.com 满分网,其中e是自然常数,a∈R.
(1)讨论a=-1时,f(x)的单调性、极值;
(2)求证:在(1)的条件下,manfen5.com 满分网
(3)是否存在实数a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.
(1)把a=-1代入f(x)=ax-ln(-x),求导,分析导函数的符号,可得f(x)的单调性、极值; (2)由(1)知f(x)在[-e,0)的最小值为1,要证,只需证的最大值小于1即可,利用导数求函数的最大值; (3))假设存在实数a,使f(x)=ax-ln(-x)有最小值3,x∈[-e,0),求导,令导数等于零,解方程得到的方程的根是否在定义域(-e,0)内进行讨论,从而求得结果. 【解析】 (1)∵f(x)=-x-ln(-x) ∴当-e≤x<-1时,f′(x)<0,此时f(x)为单调递减 当-1<x<0时,f'(x)>0,此时f(x)为单调递增 ∴f(x)的极小值为f(-1)=1 (2)∵f(x)的极小值,即f(x)在[-e,0)的最小值为1 ∴|f(x)|min=1 令 又∵ 当-e≤x<0时h′(x)≤0,h(x)在[-e,0)上单调递减 ∴ ∴当x∈[-e,0)时, (3)假设存在实数a,使f(x)=ax-ln(-x)有最小值3,x∈[-e,0) ①当时,由于x∈[-e,0),则 ∴函数f(x)=ax-ln(-x)是[-e,0)上的增函数 ∴f(x)min=f(-e)=-ae-1=3 解得(舍去) ②当时,则当时, 此时f(x)=ax-ln(-x)是减函数 当时,,此时f(x)=ax-ln(-x)是增函数 ∴ 解得a=-e2
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,在三棱锥P-ABC中,PA=3,AC=AB=4,PB=PC=BC=5,D、E分别是BC、AC的中点,F为PC上的一点,且PF:FC=3:1.
(1)求证:PA⊥BC;
(2)试在PC上确定一点G,使平面ABG∥平面DEF;
(3)在满足(2)的情况下,求二面角G-AB-C的平面角的正切值.
查看答案
东莞市政府要用三辆汽车从新市政府把工作人员接到老市政府,已知从新市政府到老市政府有两条公路,汽车走公路①堵车的概率为manfen5.com 满分网,不堵车的概率为manfen5.com 满分网;汽车走公路②堵车的概率为p,不堵车的概率为1-p.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(1)若三辆汽车中恰有一辆汽车被堵的概率为manfen5.com 满分网,求走公路②堵车的概率;
(2)在(1)的条件下,求三辆汽车中被堵车辆的个数ξ的分布列和数学期望.
查看答案
在锐角△ABC中,已知内角A、B、C的对边分别为a、b、c.向量manfen5.com 满分网manfen5.com 满分网,且向量manfen5.com 满分网manfen5.com 满分网共线.
(1)求角B的大小;
(2)如果b=1,求△ABC的面积V△ABC的最大值.
查看答案
如图,已知PA、PB是圆O的切线,A、B分别为切点,C为圆O上不与A、B重合的另一点,若∠ACB=120°,则∠APB=   
manfen5.com 满分网 查看答案
已知关于x的不等式|x+a|+|x-1|+a>2009(a是常数)的解是非空集合,则a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.