设a>0,函数f(x)=x
2+a|lnx-1|.
(Ⅰ)当a=2时,求函数f(x)的单调增区间;
(Ⅱ)若x∈[1,+∞)时,不等式f(x)≥a恒成立,实数a的取值范围.
考点分析:
相关试题推荐
已知数列{a
n}是首项为
,公比
的等比数列,设
,数列{c
n}满足c
n=a
n•b
n.
(1)求证:{b
n}是等差数列;
(2)求数列{c
n}的前n项和S
n;
(3)若
对一切正整数n恒成立,求实数m的取值范围.
查看答案
已知圆C:x
2+y
2=9,点A(-5,0),直线l:x-2y=0.
(1)求与圆C相切,且与直线l垂直的直线方程;
(2)在直线OA上(O为坐标原点),存在定点B(不同于点A),满足:对于圆C上任一点P,都有
为一常数,试求所有满足条件的点B的坐标.
查看答案
如图,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,
.
(Ⅰ)求证:平面SAB⊥平面SAD;
(Ⅱ)设SB的中点为M,当
为何值时,能使DM⊥MC?请给出证明.
查看答案
在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图),已知从左到右各长方形的高的比为2:3:4:6:4:1,第三组的频数为12,请解答下列问题:
(1)本次活动共有多少件作品参加评比?
(2)哪组上交的作品数量最多?共有多少件?
(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高?
查看答案
已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),
.
(1)若
,求角α的值;
(2)若
,求
的值.
查看答案