满分5 > 高中数学试题 >

设函数.(p是实数,e是自然对数的底数) (1)若直线l与函数f(x),g(x)...

设函数manfen5.com 满分网.(p是实数,e是自然对数的底数)
(1)若直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p的值;
(2)若f(x)在其定义域内为单调函数,求p的取值范围;
(3)若在[1,e]上至少存在一点x,使得f(x)>g(x)成立,求p的取值范围.
(1)由“函数f(x)的图象相切于点(1,0)求得切线l的方程,再由“l与g(x)图象相切”得到(p-1)x2-(p-1)x-e=0由判别式求解即可. (2)求导f’(x)=,要使“f(x)为单调增函数”,转化为“f’(x)≥0恒成立”,再转化为“p≥=恒成立”,由最值法求解.同理,要使“f(x)为单调减函数”,转化为“f’(x)≤0恒成立”,再转化为“p≤=恒成立”,由最值法求解,最后两个结果取并集. (3)因为“在[1,e]上至少存在一点x,使得f(x)>g(x)成立”,要转化为“f(x)max>g(x)min”解决,易知g(x)=在[1,e]上为减函数,所以g(x)∈[2,2e],①当p≤0时,f(x)在[1,e]上递减;②当p≥1时,f(x)在[1,e]上递增;③当0<p<1时,两者作差比较. 【解析】 (1)∵f′(x)=p+,∴f’(1)=2(p-1),设直线l:y=2(p-1)(x-1), ∵l与g(x)图象相切,∴y=2(p-1)(x-1),得(p-1)(x-1)=,即(p-1)x2-(p-1)x-e=0,y= 当p=1时,方程无解;当p≠1时由△=(p-1)2-4(p-1)(-e)=0, 得p=1-4e,综上,p=1-4e (2)f’(x)=,要使“f(x)为单调增函数”,转化为“f’(x)≥0恒成立”,即p≥=恒成立,又,所以当p≥1时,f(x)在(0,+∞)为单调增函数. 同理,要使“f(x)为单调减函数”,转化为“f’(x)≤0恒成立,再转化为“p≤=恒成立”,又,所以当p≤0时,f(x)在(0,+∞)为单调减函数. 综上所述,f(x)在(0,+∞)为单调函数,p的取值范围为p≥1或p≤0 (3)因g(x)=在[1,e]上为减函数,所以g(x)∈[2,2e] ①当p≤0时,由(1)知f(x)在[1,e]上递减⇒f(x)max=f(1)=0<2,不合题意 ②当p≥1时,由(1)知f(x)在[1,e]上递增,f(1)<2,又g(x)在[1,e]上为减函数, 故只需f(x)max>g(x)min,x∈[1,e], 即:f(e)=p(e-)-2lne>2⇒p>. ③当0<p<1时,因x-≥0,x∈[1,e] 所以f(x)=p(x-)-2lnx≤(x-)-2lnx≤e--2lne<2不合题意 综上,p的取值范围为( ,+∞)
复制答案
考点分析:
相关试题推荐
如图,椭圆manfen5.com 满分网=1的两焦点F1,F2与短轴两端点B1,B2构成∠B2F1B1为120°,面积为manfen5.com 满分网的菱形.
(1)求椭圆的方程;
(2)若直线l:y=kx+m与椭圆相交于M,N两点(M,N不是左右顶点),且以MN为直径的圆过椭圆右顶点A,求证:直线l过定点,并求出该定点的坐标.
查看答案
如图,一棱长为2的正四面体O-ABC的顶点O在平面α内,底面ABC平行于平面α,平面OBC与平面α的交线为l.
(1)当平面OBC绕l顺时针旋转与平面α第一次重合时,求平面OBC转过角的正弦
值.
(2)在上述旋转过程中,△OBC在平面α上的投影为等腰△OB1C1(如图1),B1C1的中点为O1.当AO⊥平面α时,问在线段OA上是否存在一点P,使O1P⊥OBC?请说明理由.
manfen5.com 满分网
查看答案
若x5+1=a+a1(x-1)+a2(x-1)2+…+a5(x-1)5对任意实数x都成立,则a+a1+a2+…+a5的值等于    查看答案
若数列manfen5.com 满分网),试通过计算C1,C2,C3的值,推测出Cn=    查看答案
若关于x的不等式ax2-|x|+2a<0的解集为∅,则实数a的取值范围为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.