满分5 > 高中数学试题 >

长春市某中学高三(1)班40名学生在一次数学测验中,成绩全部介于100分与150...

长春市某中学高三(1)班40名学生在一次数学测验中,成绩全部介于100分与150分之间,将测验成绩按如下方式分成五组:第一组[100,110);第二组[110,120),…,第五组[140,150].右图是按上述分组方法得到的频率分布直方图.
(I)若成绩在130分以上为优秀,求该班在这次测验中成绩优秀的人数;
(II)估计该班在这次测验中的平均分(同一组中的数据用该组区间的中点值作代表);
(III)该班有3名学生因故未参加考试,如果他们参加考试,且彼此之间的成绩不受影响,以已知样本数据的频率作为这3名同学成绩的概率.试求这3名学生中至少有1人成绩不低于130分的概率.

manfen5.com 满分网
(I)由直方图知,成绩在[130,150]内的人数为:40×0.2+40×0.1,运算求得结果. (II)设该班在这次测验中的平均分为,则=105×0.05+115×0.25+125×0.4+135×0.2+145×0.1,运算求得结果. (III)每1名学生成绩不低于130的概率为  p=0.3,这3名学生中至少有1人成绩不低于130分的概率为1-C3×0.73=,  运算求得结果. 【解析】 (I)由直方图知,成绩在[130,150]内的人数为:40×0.2+40×0.1=12 (人) 所以该班成绩优秀的人数为12人. (II)设该班在这次测验中的平均分为, 则=105×0.05+115×0.25+125×0.4+135×0.2+145×0.1=125.5(分). (III)每1名学生成绩不低于130的概率为  p=0.2+0.1=0.3. 设这3名学生中至少有1人成绩不低于130分为事件A,其对立事件为:这3名学生成绩全部低于130分, P(A)=1-C3×0.73=1-0.343=0.657.
复制答案
考点分析:
相关试题推荐
如图所示,某海岛上一观察哨A上午11时测得一轮船在海岛北偏东60°的C处,12时20分测得船在海岛北偏西60°的B处,12时40分轮船到达位于海岛正西方且距海岛5km的E港口,如果轮船始终匀速直线前进,问船速多少?

manfen5.com 满分网 查看答案
某同学在研究函数manfen5.com 满分网(x∈R)时,分别给出下面几个结论:①F(-x)+f(x)=0在x∈R时恒成立;②函数f (x)的值域为(-1,1);③若x1≠x2,则一定有f (x1)≠f (x2);④函数g(x)=f(x)-x在R上有三个零点.其中正确结论的序号有     查看答案
为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:
理科文科合计
131023
72027
合计203050
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2的观测值k=manfen5.com 满分网≈4.844.则可以有    %的把握认为选修文科与性别有关系. 查看答案
当实数x满足约束条件manfen5.com 满分网(其中k为小于零的常数)时,manfen5.com 满分网的最小值为2,则实数k的值是     查看答案
在(1+x)3+(1+manfen5.com 满分网2+(1+manfen5.com 满分网)的展开式中,x的系数为    . (用数字作答) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.