如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4,将四边形EFCD沿EF折起如图2的位置,使AD=AE.
(I)求证:BC∥平面DAE;
(II)求四棱锥D-AEFB的体积;
(III)求面CBD与面DAE所成锐二面角的余弦值.
考点分析:
相关试题推荐
长春市某中学高三(1)班40名学生在一次数学测验中,成绩全部介于100分与150分之间,将测验成绩按如下方式分成五组:第一组[100,110);第二组[110,120),…,第五组[140,150].右图是按上述分组方法得到的频率分布直方图.
(I)若成绩在130分以上为优秀,求该班在这次测验中成绩优秀的人数;
(II)估计该班在这次测验中的平均分(同一组中的数据用该组区间的中点值作代表);
(III)该班有3名学生因故未参加考试,如果他们参加考试,且彼此之间的成绩不受影响,以已知样本数据的频率作为这3名同学成绩的概率.试求这3名学生中至少有1人成绩不低于130分的概率.
查看答案
如图所示,某海岛上一观察哨A上午11时测得一轮船在海岛北偏东60°的C处,12时20分测得船在海岛北偏西60°的B处,12时40分轮船到达位于海岛正西方且距海岛5km的E港口,如果轮船始终匀速直线前进,问船速多少?
查看答案
某同学在研究函数
(x∈R)时,分别给出下面几个结论:①F(-x)+f(x)=0在x∈R时恒成立;②函数f (x)的值域为(-1,1);③若x
1≠x
2,则一定有f (x
1)≠f (x
2);④函数g(x)=f(x)-x在R上有三个零点.其中正确结论的序号有
.
查看答案
为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:
| 理科 | 文科 | 合计 |
男 | 13 | 10 | 23 |
女 | 7 | 20 | 27 |
合计 | 20 | 30 | 50 |
已知P(K
2≥3.841)≈0.05,P(K
2≥5.024)≈0.025.根据表中数据,得到K
2的观测值k=
≈4.844.则可以有
%的把握认为选修文科与性别有关系.
查看答案
当实数x满足约束条件
(其中k为小于零的常数)时,
的最小值为2,则实数k的值是
.
查看答案