满分5 > 高中数学试题 >

已知函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,数列{a...

已知函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(I)求数列{an}的通项公式及Sn的最大值;
(II)令manfen5.com 满分网,其中n∈N*,求{nbn}的前n项和.
(I)求出f(x)的导函数即可得到a与b的值,然后把Pn(n,Sn)代入到f(x)中得到Sn=-n2+7n,利用an=Sn-Sn-1得到通项公式,令an=-2n+8≥0得到n的范围即可求出Sn的最大值; (II)由题知,数列{bn}是首项为8,公比是的等比数列,表示出{nbn}的各项,利用错位相减法求出{nbn}的前n项和即可. 【解析】 (I)∵f(x)=ax2+bx(a≠0),∴f'(x)=2ax+b 由f'(x)=-2x+7得:a=-1,b=7,所以f(x)=-x2+7x 又因为点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上,所以有Sn=-n2+7n 当n=1时,a1=S1=6 当n≥2时,an=Sn-Sn-1=-2n+8,∴an=-2n+8(n∈N*) 令an=-2n+8≥0得n≤4,∴当n=3或n=4时,Sn取得最大值12 综上,an=-2n+8(n∈N*),当n=3或n=4时,Sn取得最大值12 (II)由题意得 所以,即数列{bn}是首项为8,公比是的等比数列, 故{nbn}的前n项和Tn=1×23+2×22++n×2-n+4① ② 所以①-②得: ∴
复制答案
考点分析:
相关试题推荐
如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4,将四边形EFCD沿EF折起如图2的位置,使AD=AE.
(I)求证:BC∥平面DAE;
(II)求四棱锥D-AEFB的体积;
(III)求面CBD与面DAE所成锐二面角的余弦值.

manfen5.com 满分网 查看答案
某中学选派40名同学参加上海世博会青年志愿者服务队(简称“青志队”),他们参加活动的次数统计如表所示.
活动次数123
参加人数51520
(Ⅰ)从“青志队”中任意选3名学生,求这3名同学中至少有2名同学参加活动次数恰好相等的概率;
(Ⅱ)从“青志队”中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.
查看答案
设角A,B,C是△ABC的三个内角,已知向量manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求角C的大小;
(Ⅱ)若向量manfen5.com 满分网,试求manfen5.com 满分网的取值范围.
查看答案
若关于x的不等式ax2-|x|+2a<0的解集为∅,则实数a的取值范围为    查看答案
当实数x满足约束条件manfen5.com 满分网(其中k为小于零的常数)时,manfen5.com 满分网的最小值为2,则实数k的值是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.