满分5 > 高中数学试题 >

f(x)是定义在[-2,2]上的偶函数,且f(x)在[0,2]上单调递减,若f(...

f(x)是定义在[-2,2]上的偶函数,且f(x)在[0,2]上单调递减,若f(1-m)<f(m)成立,求实数m的取值范围.
由题条件知函数在[0,2]上是减函数,在[-2,0]上是增函数,其规律是自变量的绝对值越小,其函数值越大,由此可直接将f(1-m)<f(m)转化成一般不等式,再结合其定义域可以解出m的取值范围. 【解析】 因为函数是偶函数,∴f(1-m)=f(|1-m|),f(m)=f(|m|),   又f(x)在[0,2]上单调递减,故函数在[-2,0]上是增函数 ∵f(1-m)<f(m) ∴,得. 实数m的取值范围是.
复制答案
考点分析:
相关试题推荐
已知函数y=f (x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2),试判断f(x)的奇偶性.
查看答案
已知动圆M过定点P(0,m)(m>0),且与定直线l1:y=-m相切,动圆圆心M的轨迹为C,直线l2过点P交曲线C于A,B两点.
(1)求曲线C的方程.(2)若l2交x轴于点S,且manfen5.com 满分网,求l2的方程.(3)若l2的倾斜角为30°,在l1上是否存在点E使△ABE为正三角形?若能,求点E的坐标;若不能,说明理由.
查看答案
已知函数manfen5.com 满分网(a,b,c∈R)在点(1,f(1))处的切线斜率为manfen5.com 满分网,且a>2c>b.
(1)证明:manfen5.com 满分网
(2)证明:函数f(x)在区间(0,2)内至少有一个极值点.
查看答案
已知函数f(x)=ax2+bx(a≠0)的导函数f'(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(I)求数列{an}的通项公式及Sn的最大值;
(II)令manfen5.com 满分网,其中n∈N*,求{nbn}的前n项和.
查看答案
如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4,将四边形EFCD沿EF折起如图2的位置,使AD=AE.
(I)求证:BC∥平面DAE;
(II)求四棱锥D-AEFB的体积;
(III)求面CBD与面DAE所成锐二面角的余弦值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.