满分5 > 高中数学试题 >

已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x. ...

已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.
(I)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)设有且仅有一个实数x,使得f(x)=x,求函数f(x)的解析表达式.
(I)由题意知f(f(2)-22+2)=f(2)-22+2,f(1)=1,由上此可推出f(a)=a. (II)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x.又因为有且只有一个实数x,使得f(x)=x 所以对任意x∈R,有f(x)-x2+x=x,因为f(x)=x,所以x-x2=0,故x=0或x=1.由此可推导出f(x)=x2-x+1(x∈R). 【解析】 (I)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x 所以f(f(2)-22+2)=f(2)-22+2 又由f(2)=3,得f(3-22+2)=3-22+2,即f(1)=1 若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a. (II)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x. 又因为有且只有一个实数x,使得f(x)=x 所以对任意x∈R,有f(x)-x2+x=x 在上式中令x=x,有f(x)-x2+x=x 又因为f(x)=x,所以x-x2=0,故x=0或x=1 若x=0,则f(x)-x2+x=0,即f(x)=x2-x 但方程x2-x=x有两个不相同实根,与题设条件矛盾.故x≠0 若x=1,则有f(x)-x2+x=1,即f(x)=x2-x+1.易验证该函数满足题设条件. 综上,所求函数为f(x)=x2-x+1(x∈R)
复制答案
考点分析:
相关试题推荐
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足:f(ab)=af(b)+bf(a).
(1)求f(0)及f(1)的值;
(2)判断的奇偶性,并证明你的结论;
(3)若manfen5.com 满分网,求证数列{un}是等差数列,并求{un}的通项公式.
查看答案
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)若f(-3)=a,试用a表示f(24).
查看答案
f(x)是定义在(-∞,3]上的减函数,不等式f(a2-sinx)≤f(a+1+cos2x)对一切x∈R均成立,求实数a的取值范围.
查看答案
设f(x)是定义在R上的奇函数,且对任意a,b,当a+b≠0,都有manfen5.com 满分网>0
(1).若a>b,试比较f(a)与f(b)的大小;
(2).若f+f(3x-9x-2)<0对x∈[-1,1]恒成立,求实数k的取值范围.
查看答案
已知定义在R上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.