满分5 > 高中数学试题 >

设函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n...

设函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,0<f(x)<1.
(1)求证:f(0)=1,且当x<0时,有f(x)>1;
(2)判断f(x)在R上的单调性;
(3)设集合A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=∅,求a的取值范围.
(1)利用赋值法证明f(0)=1,因为f(m+n)=f(m)f(n),且当x>0时,0<f(x)<1,利用赋值法,只需令m=x<0,n=-x>0,即可证明当x<0时,有f(x)>1. (2)利用函数单调性的定义判断,只需设R上x1,x2,且x1<x2,再作差比较f(x2)与f(x1)的大小即可. (3)先判断集合A,B分别表示什么集合,两个集合都是点集,A表示圆心在(0,0),半径是1的圆的内部,B表示直线ax-y+2=0,因为A∩B=∅,所以直线与圆内部没有交点,直线与圆相离或相切,再据此求出参数的范围. 【解析】 (1)证明:∵f(m+n)=f(m)f(n),令m=1,n=0,则f(1)=f(1)f(0), 且由x>0时,0<f(x)<1,∴f(1)>0∴f(0)=1; 设m=x<0,n=-x>0,∴f(0)=f(x)f(-x),∴f(x)= ∵-x>0,∴0<f(-x)<1,∴>1. 即当x<0时,有f(x)>1. (2)设x1<x2,则x2-x1>0,∴0<f(x2-x1)<1, ∴f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1) =f(x2-x1)f(x1)-f(x1)=f(x1)[f(x2-x1)-1]<0,  当m=n时,f(2n)=f(n)f(n)=f(n)2≥0, 所以当x∈R,f(x)≥0,所以f(x1)≥0, 所以f(x2)-f(x1)>0,即f(x2>f(x1), ∴f(x)在R上单调递减. (3)∵f(x2)f(y2)>f(1), ∴f(x2+y2)>f(1),由f(x)单调性知x2+y2<1, 又f(ax-y+2)=1=f(0), ∴ax-y+2=0, 又A∩B=∅,∴, ∴a2+1≤4,从而.
复制答案
考点分析:
相关试题推荐
函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③f(manfen5.com 满分网)>1.
(1)求f(0)的值;
(2)求证:f(x)在R上是单调增函数;
(3)若a>b>c>0且b2=ac,求证:f(a)+f(c)>2f(b).
查看答案
已知函数f(x)的定义域为R,对任意实数m,n都有manfen5.com 满分网,且manfen5.com 满分网,当manfen5.com 满分网时,f(x)>0.
(1)求f(1);
(2)求和f(1)+f(2)+…+f(n)(n∈N*);
(3)判断函数f(x)的单调性并证明.
查看答案
已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.
(I)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)设有且仅有一个实数x,使得f(x)=x,求函数f(x)的解析表达式.
查看答案
已知f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R都满足:f(ab)=af(b)+bf(a).
(1)求f(0)及f(1)的值;
(2)判断的奇偶性,并证明你的结论;
(3)若manfen5.com 满分网,求证数列{un}是等差数列,并求{un}的通项公式.
查看答案
已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)若f(-3)=a,试用a表示f(24).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.