满分5 > 高中数学试题 >

设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f...

设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.
(Ⅰ)试判断函数y=f(x)的奇偶性;
(Ⅱ)试求方程f(x)=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.
(I)利用条件先求出函数的周期,再求出f(-3)=f(7)≠0,而f(3)=0,f(-3)≠-f(3)根据奇偶性的定义可知该函数为非奇非偶函数; (2II)根据周期函数性质可知,只需求出一个周期里的根的个数,可求得f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数y=f(x)在[0,2005]上有402个解,在[-2005.0]上有400个解. 【解析】 由⇒⇒f(4-x)=f(14-x)⇒f(x)=f(x+10), 又f(3)=0,而f(7)≠0,⇒f(-3)=f(7)≠0⇒f(-3)≠f(3),f(-3)≠-f(3) 故函数y=f(x)是非奇非偶函数; (II)由⇒⇒f(4-x)=f(14-x)⇒f(x)=f(x+10) 又f(3)=f(1)=0⇒f(11)=f(13)=f(-7)=f(-9)=0 因为在闭区间[0,7]上,只有f(1)=f(3)=0,故在[4,7]上无零点, 又f(7-x)=f(7+x),故在[7,10]上无零点,故在[0,10]上仅有两个解 故f(x)在[0,10]和[-10,0]上均有有两个解, 从而可知函数y=f(x)在[0,2005]上有402个解,在[-2005.0]上有400个解, 所以函数y=f(x)在[-2005,2005]上有802个解.
复制答案
考点分析:
相关试题推荐
已知函数f(x)对于x>0有意义,且满足条件f(2)=1,f(xy)=f(x)+f(y),f(x)是非减函数.
(1)证明f(1)=0;
(2)若f(x)+f(x-2)≥2成立,求x的取值范围.
查看答案
已知函数函数f(x)是定义域为R的奇函数,且它的图象关于直线x=1对称.
(1)求f(0)的值
(2)证明函数f(x)是周期函数
(3)若f(x)=x(0<x≤1),求x∈R时,函数f(x)的解析式,并画出满足条件的函数f(x)至少一个周期的图象.
查看答案
已知函数f(x)是定义在R上的增函数,设F(x)=f(x)-f(a-x).
(1)用函数单调性的定义证明:F(x)是R上的增函数;
(2)证明:函数y=F(x)的图象关于点(manfen5.com 满分网,0)成中心对称图形.
查看答案
设函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,0<f(x)<1.
(1)求证:f(0)=1,且当x<0时,有f(x)>1;
(2)判断f(x)在R上的单调性;
(3)设集合A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=∅,求a的取值范围.
查看答案
函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③f(manfen5.com 满分网)>1.
(1)求f(0)的值;
(2)求证:f(x)在R上是单调增函数;
(3)若a>b>c>0且b2=ac,求证:f(a)+f(c)>2f(b).
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.