满分5 > 高中数学试题 >

已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x...

已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)=5,求不等式f(a2-2a-2)<3的解.
本题考查的是抽象函数问题,已知抽象函数的运算性质,常用“赋值法”.有具体函数背景的抽象函数问题,如果是客观题,可以用具体函数求解.如本题:可设f(x)=kx+b,根据条件求出k、b,再解不等式. 【解析】 解抽象函数的不等式,需知函数的单调性; 用定义:任取x1<x2,x2-x1>0,则f(x2-x1)>2 ∴f(x2)+f(-x1)-2>2 ∴f(x2)+f(-x1)>4; 对f(x+y)+2=f(x)+f(y)取x=y=0得: f(0)=2,再取y=-x得f(x)+f(-x)=4即f(-x)=4-f(x), ∴有f(x2)+4-f(x1)>4 ∴f(x2)>f(x1) ∴f(x)在R上递增, 又f(3)=f(2)+f(1)-2=f(1)+f(1)-2+f(1)-2=3f(1)-4=5 ∴f(1)=3; 于是:不等式f(a2-2a-2)<3等价于f(a2-2a-2)<f(1) ∴a2-2a-2<1 ∴-1<a<3. 所以不等式的解集为:a|-1<a<3.
复制答案
考点分析:
相关试题推荐
已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域.
查看答案
设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.
(Ⅰ)试判断函数y=f(x)的奇偶性;
(Ⅱ)试求方程f(x)=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.
查看答案
已知函数f(x)对于x>0有意义,且满足条件f(2)=1,f(xy)=f(x)+f(y),f(x)是非减函数.
(1)证明f(1)=0;
(2)若f(x)+f(x-2)≥2成立,求x的取值范围.
查看答案
已知函数函数f(x)是定义域为R的奇函数,且它的图象关于直线x=1对称.
(1)求f(0)的值
(2)证明函数f(x)是周期函数
(3)若f(x)=x(0<x≤1),求x∈R时,函数f(x)的解析式,并画出满足条件的函数f(x)至少一个周期的图象.
查看答案
已知函数f(x)是定义在R上的增函数,设F(x)=f(x)-f(a-x).
(1)用函数单调性的定义证明:F(x)是R上的增函数;
(2)证明:函数y=F(x)的图象关于点(manfen5.com 满分网,0)成中心对称图形.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.