满分5 > 高中数学试题 >

已知数列{an}的前n项和为Sn,且an+1=Sn-n+3,n∈N+,a1=2....

已知数列{an}的前n项和为Sn,且an+1=Sn-n+3,n∈N+,a1=2.
(Ⅰ)求数列{an}的通项;
(Ⅱ)设manfen5.com 满分网的前n项和为Tn,证明:Tnmanfen5.com 满分网
(1)根据题中所给的an+1=Sn-n+3,可得an=sn-1-(n-1)+3,两者相减即可得出递推式,进而求出数列{an}的通项. (2)根据题中所给的式子,求出bn的通项公式,进而求出的前n项和Tn,再比较它与的大小. 【解析】 (Ⅰ)∵an+1=Sn-n+3,n≥2时,an=Sn-1-(n-1)+3,(2分)∴an+1-an=an-1,即an+1=2an-1,∴an+1-1=2(an-1),(n≥2,n∈N*),(4分)∴an-1=(a2-1)2n-2=3•2n-2an=(6分) (Ⅱ)∵Sn=an+1+n-3=3•2n-1+n-2,∴(8分)∴ 相减得,,(10分) ∴<.(12分) ∴结论成立.
复制答案
考点分析:
相关试题推荐
某班全部t名学生在一次百米测试中,成绩全部介于13秒和18秒之间.将测试结果按如下方式分为五组:第一组[13,14);第二组[14,15);…;第五组[17,18],下表是按上述分组方式得到的频率分布表.
分 组频数频率
[13,14)x0.04
[14,15)9y
[15,16)z0.38
[16,17)160.32
[17,18]40.08
(Ⅰ)求t及上表中的x,y,z的值;
(Ⅱ)设m,n是从第一组或第五组中任意抽取的两名学生的百米测试成绩,求事件“|m-n|>1”的概率.
查看答案
如图所示,在棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,且AB∥CD,∠BAD=90°,PA=AD=DC=2,AB=4.
(Ⅰ)求证:BC⊥PC;
(Ⅱ)若F为PB的中点,求证:CF∥平面PAD.

manfen5.com 满分网 查看答案
manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期及单调递增区间;
(Ⅱ)若锐角α满足manfen5.com 满分网,求tanα的值.
查看答案
已知函数y=f(x)是R上的偶函数,对于任意x∈R,都有f(x+6)=f(x)+f(3)成立,当x1,x2∈[0,3],且x1≠x2时,都有manfen5.com 满分网.给出下列命题:
①f(3)=0;
②直线x=-6是函数y=f(x)的图象的一条对称轴;
③函数y=f(x)在[-9,-6]上为增函数;
④函数y=f(x)在[-9,9]上有四个零点.
其中所有正确命题的序号为    (把所有正确命题的序号都填上) 查看答案
已知manfen5.com 满分网manfen5.com 满分网,点C在∠AOB内,∠AOC=45°,设manfen5.com 满分网,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.