(Ⅰ)当n=1时,S1=2a1-22得a1=4.由Sn=2an-2n+1,Sn-1=2an-1-2n,得an=2an-1+2n,由此能够证明数列是等差数列.
(Ⅱ)由,知an=(n+1)•2n.因为an>0,所以不等式an+1<(5-λ)an等价于.因为,而0<≤1,所以,由此能求出使不等式an+1<(5-λ)an成立的λ的取值范围.
【解析】
(Ⅰ)当n=1时,S1=2a1-22
得a1=4.Sn=2an-2n+1,
当n≥2时,Sn-1=2an-1-2n,
两式相减得an=2an-2an-1-2n.
即an=2an-1+2n,
所以
=.
又,
所以数列是以2为首项,1为公差的等差数列.…(6分)
(Ⅱ)由(Ⅰ)知,
即an=(n+1)•2n.
因为an>0,所以不等式an+1<(5-λ)an等价于.
因为,
而0<≤1,
所以,
故3<5-λ,即λ<2.
故使不等式an+1<(5-λ)an成立的λ的取值范围是(-∞,2). …(12分)