满分5 >
高中数学试题 >
椭圆的左右焦点为F1,F2,一直线过F1交椭圆于A,B两点,则△ABF2的周长为...
椭圆
的左右焦点为F
1,F
2,一直线过F
1交椭圆于A,B两点,则△ABF
2的周长为( )
A.32
B.16
C.8
D.4
考点分析:
相关试题推荐
设全集U={-2,-1,0,1,2},A={-2,-1,0},B={0,1,2},则(∁
UA)∩B=( )
A.{0}
B.{-2,-1}
C.{1,2}
D.{0,1,2}
查看答案
设函数
.
(Ⅰ) 讨论函数f(x)的单调性;
(Ⅱ)若x≥0时,恒有f(x)≤ax
3,试求实数a的取值范围;
(Ⅲ)令
,试证明:
.
查看答案
如图,已知直线l与抛物线x
2=4y相切于点P(2,1),且与x轴交于点A,定点B的坐标为(2,0).
(I)若动点M满足
,求点M的轨迹C;
(Ⅱ)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
AD=1,CD=
.
(Ⅰ)若点M是棱PC的中点,求证:PA∥平面BMQ;
(Ⅱ)求证:平面PQB⊥平面PAD;
(Ⅲ)若二面角M-BQ-C为30°,设PM=tMC,试确定t的值.
查看答案
在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是
.
(Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望;
(Ⅱ)求教师甲在一场比赛中获奖的概率;
(Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗?
查看答案