满分5 > 高中数学试题 >

已知数列{an},且是函数f(x)=an-1x3-3[(t+1)an-an+1]...

已知数列{an},且manfen5.com 满分网是函数f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一个极值点.数列{an}中a1=t,a2=t2(t>0且t≠1).
(1)求数列{an}的通项公式;
(2)记manfen5.com 满分网,当t=2时,数列{bn}的前n项和为Sn,求使Sn>2010的n的最小值;
(3)若manfen5.com 满分网,证明:manfen5.com 满分网
(1)利用函数极值的定义得出数列相邻两项之间的关系是解决本题的关键,关键要确定出相关数列为特殊数列,从而达到求解的目的; (2)求出数列{bn}的前n项和Sn是解决本题的关键,根据已知条件确定出关于n的不等式,通过解不等式求出正整数n的最小值; (3)首先要确定出cn的表达式,利用分析法完成不等式的证明,注意约分思想的运用. 【解析】 (1)f′(x)=3an-1x2-3[(t+1)an-an+1], 所以.整理得:an+1-an=t(an-an-1). 当t=1时,{an-an-1}是常数列,得an=1; 当t≠1时,{an-an-1}是以a2-a1=t2-t为首项,t为公比的等比数列,所以an-an-1=(t2-t)•tn-2=(t-1)•tn-1 由上式得:an-tn=an-1-tn-1,所以{an-tn}是常数列,an-tn=a1-t=0,an=tn(n≥2).又,当t=1时上式仍然成立,故an=tn(n∈N*). (2)当t=2时,∴ =. 由Sn>2010,得,, 当, 因此n的最小值为1006. (3)且,所以等价于等价于 因为, 所以,从而原命题得证.
复制答案
考点分析:
相关试题推荐
如图,双曲线的中心在坐标原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.又已知该双曲线的离心率manfen5.com 满分网
(I)求证:manfen5.com 满分网依次成等差数列;
(II)若manfen5.com 满分网,求直线AB在双曲线上所截得的弦CD的长度.

manfen5.com 满分网 查看答案
已知函数f(x)=x3+3ax-1的导函数为f(x),g(x)=f(x)-ax-3.
(1)当a=-2时,求函数f(x)的单调区间;
(2)若对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围;
(3)若x•g(x)+lnx>0对一切x≥2恒成立,求实数a的取值范围.
查看答案
如图,四棱锥P-ABCD的底面为矩形,侧棱PD垂直于底面,PD=DC=2BC,E为棱PC上的点,且平面BDE⊥平面PBC.
(1)求证:E为PC的中点;
(2)求二面角A-BD-E的大小.

manfen5.com 满分网 查看答案
manfen5.com 满分网某工厂2010年第一季度生产的A、B、C、D四种型号的产品产量用条形图表示如图,现用分层抽样的方法从中选取50件样品参加四月份的一个展销会:
(1)问A、B、C、D型号的产品各抽取多少件?
(2)从50件样品随机的抽取2件,求这2件产品恰好是不同型号产品的概率;
(3)从A、C型号的产品中随机的抽取3件,用ξ表示抽取A种型号的产品件数,求ξ的分布列和数学期望.
查看答案
已知△ABC的周长为6,角A,B,C所对的边a,b,c成等比数列.
(1)求角B及边b的最大值.
(2)设△ABC的面积为s,求s+manfen5.com 满分网的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.