满分5 > 高中数学试题 >

设圆Q过点P(0,2),且在x轴上截得的弦RG的长为4. (1)求圆心Q的轨迹E...

设圆Q过点P(0,2),且在x轴上截得的弦RG的长为4.
(1)求圆心Q的轨迹E的方程;
(2)过点F(0,1),作轨迹E的两条互相垂直的弦AB,CD,设AB、CD的中点分别为M,N,试判断直线MN是否过定点?并说明理由.

manfen5.com 满分网
(1)借助于图象把已知条件转化为|QR|2=|QH|2+|RH|2,就可求出圆心Q的轨迹E的方程; (2)先利用条件求出AB的中点M的坐标与直线AB的斜率之间的关系式,以及CD的中点N与直线CD的斜率之间的关系式;再求出直线MN的方程,整理可以得到直线MN所过定点. 【解析】 (1)设圆心Q的坐标为(x、y),如图过圆心Q作QH⊥x轴于H, 则H为RG的中点,在Rt△RHQ中,|QR|2=|QH|2+|RH|2 ∵|QR|=|QP|,|RH|=2, ∴x2+(y-2)2=y2+4 即x2=4y,所以轨迹E的方程为x2=4y.(5分) (2)设A(xA,yA)、B(xB,yB),M(xm,ym)、N(xN,yN) 直线AB的方程为y=kx+1(k≠0),联立x2=4y有:x2-4kx-4=0 ∴,yM=kxM+1=2k2+1, ∴点M的坐标为(2k,2k2+1).(7分) 同理可得:点N的坐标为. 直线MN的斜率为, 其方程为,整理得k(y-3)=(k2-1)x, 不论k为何值,点(0,3)均满足方程, ∴直线MN恒过定点(0,3).(12分)
复制答案
考点分析:
相关试题推荐
某工厂生产某种儿童玩具,每件玩具的成本为30元,并且每件玩具的加工费为t元(其中t为常数,且2≤t≤5),设该工厂每件玩具的出厂价为x元(35≤x≤41),根据市场调查,日销售量与ex(e为自然对数的底数)成反比例,当每件玩具的出厂价为40元时,日销售量为10件.
(1)求该工厂的日利润y(元)与每件玩具的出厂价x元的函数关系式;
(2)当每件玩具的日售价为多少元时,该工厂的利润y最大,并求y的最大值.
查看答案
一个袋中有大小相同的标有1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回),记下标号.若拿出球的标号是3的倍数,则得1分,否则得-1分.
(Ⅰ)求拿4次至少得2分的概率;
(Ⅱ)求拿4次所得分数ξ的分布列和数学期望.
查看答案
如图甲,直角梯形ABCD中,AB∥CD,∠DAB=manfen5.com 满分网,点M、N分别在AB,CD上,且MN⊥AB,MC⊥CB,BC=2,MB=4,现将梯形ABCD沿MN折起,使平面AMND与平面MNCB垂直(如图乙).
(1)求证:AB∥平面DNC;
(2)当DN的长为何值时,二面角D-BC-N的大小为30°?

manfen5.com 满分网 查看答案
已知m=manfen5.com 满分网,n=(cosωx-sinωx,2sinωx),其中ω>0,若函数f(x)=m•n,且f(x)的对称中心到f(x)对称轴的最近距离不小于manfen5.com 满分网
(Ⅰ)求ω的取值范围;
(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,且a=1,b+c=2,当ω取最大值时,f(A)=1,求△ABC的面积.
查看答案
定义在R上的偶函数y=f(x)满足:
①对x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③当x1,x2∈[0,3]且x1≠x2时,都有manfen5.com 满分网>0则
(1)f(2009)=   
(2)若方程f(x)=0在区间[a,6-a]上恰有3个不同实根,实数a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.