对任意的x1,x2∈[0,+∞)(x1≠x2),有.可得出函数在[0,+∞)上是减函数,再由偶函数的性质得出函数在(-∞,0]是增函数,由此可得出此函数函数值的变化规律,由此规律选出正确选项
【解析】
任意的x1,x2∈[0,+∞)(x1≠x2),有.
∴f(x)在x1,x2∈(0,+∞]上单调递减,
又f(x)是偶函数,故f(x)在(-∞,0]单调递增.
且满足n∈N*时,f(-2)=f(2),3>2>1>0,
由此知,此函数具有性质:自变量的绝对值越小,函数值越大
∴f(3)<f(-2)<f(1),
故选A.