满分5 > 高中数学试题 >

如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,定点B...

manfen5.com 满分网如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,定点B的坐标为(2,0).
(I)若动点M满足manfen5.com 满分网,求点M的轨迹C;
(Ⅱ)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.
(I)对抛物线方程进行求导,求得直线l的斜率,设出M的坐标,利用求得x和y的关系. (II)设l'方程代入椭圆的方程,消去y,利用判别式大于0求得k的范围,设出E,F的坐标,利用韦达定理表示出x1+x2和x1x2,令,则可推断出,进而表示出(x1-2)•(x2-2)和(x1-2)+(x2-2),最后求得k和λ的关系,利用k的范围求得λ的范围. 【解析】 (I)由x2=4y得, ∴. ∴直线l的斜率为y'|x=2=1, 故l的方程为y=x-1,∴点A的坐标为(1,0). 设M(x,y),则=(1,0),,, 由得, 整理,得. ∴动点M的轨迹C为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆. (II)如图,由题意知l'的斜率存在且不为零, 设l'方程为y=k(x-2)(k≠0)=1 ①, 将 ①代入,整理,得 (2k2+1)x2-8k2•x+(8k2-2)=0,由△>0得. 设E(x1,y1)、F(x2,y2),则,② 令,则, 由此可得,,且0<λ<1. 由 ②知, . ∴, 即. ∵,∴, 解得. 又∵0<λ<1,∴, ∴△OBE与△OBF面积之比的取值范围是(,1).
复制答案
考点分析:
相关试题推荐
已知函数f(x)=x2+ax-lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存 在,求出a的值;若不存在,说明理由.
查看答案
18、在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(1)求证:BC⊥平面PBD;
(2)设E为侧棱PC上一点,manfen5.com 满分网,试确定λ的值,使得二面角E-BD-P的大小为45°.

manfen5.com 满分网 查看答案
休假次数123
人数5102015
某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如下表所示:
根据上表信息解答以下问题:
(1)从该单位任选两名职工,用η表示这两人休年假次数之和,记“函数f(x)=x2-ηx-1在区间(4,6)上有且只有一个零点”为事件A,求事件A发生的概率P;
(2)从该单位任选两名职工,用ξ表示这两人休年假次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.
查看答案
已知函数manfen5.com 满分网(ω>0,x∈R),且函数f(x)的最小正周期为π.
(1)求函数f(x)的解析式并求f(x)的最小值;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(B)=1,manfen5.com 满分网,且manfen5.com 满分网,求边长b.
查看答案
本题是选做填空题,共5分,考生只能从两小题中选做一题,两题全做的,只计算第一小题
的得分.把答案填在答题 卷相应的位置.
(A)(参数方程与极坐标选讲)在极坐标系中,圆C的极坐标方程为ρ=2sinθ,过极点O的一条直线l与圆C相交于O、A两点,且∠AOX=45°,则OA=   
(B)(不等式选讲)要使关于x的不等式|x-1|+|x-a|≤3在实数范围内有解,则a的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.