满分5 > 高中数学试题 >

设U={-2,-1,0,1,2},A={-1,1},B={0,1,2},则A∩C...

设U={-2,-1,0,1,2},A={-1,1},B={0,1,2},则A∩CB=( )
A.{1}
B.∅
C.{-1}
D.{-1,0}
由U={-2,-1,0,1,2},A={-1,1},B={0,1,2},先由补集的定义求出CUB={-2,-1},再由交集的运算法则计算A∩CUB. 【解析】 ∵U={-2,-1,0,1,2},A={-1,1},B={0,1,2}, ∴CUB={-2,-1}, ∴A∩CUB={-1}. 故选C.
复制答案
考点分析:
相关试题推荐
设函数f(x)=|2x+1|-|x-2|.
(1)求不等式f(x)>2的解集;
(2)若∀x∈R,manfen5.com 满分网恒成立,求实数t的取值范围.
查看答案
已知在直角坐标系xOy中,圆锥曲线C的参数方程为manfen5.com 满分网(θ为参数),定点manfen5.com 满分网,F1,F2是圆锥曲线C的左,右焦点.
(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求经过点F1且平行于直线AF2的直线l的极坐标方程;
(2)在(I)的条件下,设直线l与圆锥曲线C交于E,F两点,求弦EF的长.
查看答案
manfen5.com 满分网如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=manfen5.com 满分网,⊙O的半径为3,求OA的长.
查看答案
巳知函数f(x)=x2-2ax-2alnx(x>0,a∈R,g(x)=ln2x+2a2+manfen5.com 满分网
(1) 证明:当a>0时,对于任意不相等的两个正实数x1、x2,均有manfen5.com 满分网>f(manfen5.com 满分网)成立;
(2) 记h(x)=manfen5.com 满分网
(i)若y=h′(x)在[1,+∞)上单调递增,求实数a的取值范围;
(ii)证明:h(x)≥manfen5.com 满分网
查看答案
已知椭圆C:manfen5.com 满分网,F1,F2分别为左,右焦点,离心率为manfen5.com 满分网,点A在椭圆C上,manfen5.com 满分网manfen5.com 满分网,过F2与坐标轴不垂直的直线l交椭圆于P,Q两点.
(1)求椭圆C的方程;
(2)在线段OF2上是否存在点M(m,0),使得以线段MP,MQ为邻边的四边形是菱形?若存在,求出实数m的取值范围;若不存在,说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.