满分5 > 高中数学试题 >

已知集合P={(x,y)|y=k},Q={(x,y)|y=ax+1},且P∩Q=...

已知集合P={(x,y)|y=k},Q={(x,y)|y=ax+1},且P∩Q=∅,那么k的取值范围是( )
A.(-∞,1)
B.(-∞,1]
C.(1,+∞)
D.(-∞,+∞)
集合P、Q代表坐标系中的点集,集合P代表直线y=k上所有的点,集合Q代表曲线y=ax+1上所有的点,分别画出它们的图象,观察它们的交点情况即可. 【解析】 集合P代表直线y=k上所有的点,集合Q代表曲线y=ax+1上所有的点, 由P∩Q=∅,可知y=k和y=ax+1没有交点, 结合图象①②可知k≤1. 所以选B.
复制答案
考点分析:
相关试题推荐
设函数f(x)=|2x+1|-|x-2|.
(1)求不等式f(x)>2的解集;
(2)若∀x∈R,manfen5.com 满分网恒成立,求实数t的取值范围.
查看答案
已知在直角坐标系xOy中,圆锥曲线C的参数方程为manfen5.com 满分网(θ为参数),定点manfen5.com 满分网,F1,F2是圆锥曲线C的左,右焦点.
(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求经过点F1且平行于直线AF2的直线l的极坐标方程;
(2)在(I)的条件下,设直线l与圆锥曲线C交于E,F两点,求弦EF的长.
查看答案
manfen5.com 满分网如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连接EC、CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=manfen5.com 满分网,⊙O的半径为3,求OA的长.
查看答案
已知椭圆C:manfen5.com 满分网,F1,F2分别为左,右焦点,离心率为manfen5.com 满分网,点A在椭圆C上,manfen5.com 满分网manfen5.com 满分网,过F2与坐标轴不垂直的直线l交椭圆于P,Q两点.
(1)求椭圆C的方程;
(2)在线段OF2上是否存在点M(m,0),使得以线段MP,MQ为邻边的四边形是菱形?若存在,求出实数m的取值范围;若不存在,说明理由.
查看答案
已知函数manfen5.com 满分网
(1)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当m=1时,证明方程f(x)=g(x)有且仅有一个实数根;
(3)若x∈(1,e]时,不等式f(x)-g(x)<2恒成立,求实数m的取值范围.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.