满分5 > 高中数学试题 >

如图,曲线C1是以原点O为中心、F1,F2为焦点的椭圆的一部分,曲线C2是以O为...

如图,曲线C1是以原点O为中心、F1,F2为焦点的椭圆的一部分,曲线C2是以O为顶点、F2为焦点的抛物线的一部分,A是曲线C1和C2的交点,曲线C1的离心率为manfen5.com 满分网,若manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求曲线C1和C2所在的椭圆和抛物线方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问manfen5.com 满分网是否为定值?若是,求出定值;若不是,请说明理由.

manfen5.com 满分网
(Ⅰ)因为椭圆的离心率为,所以=,因为,所以可求出a,再根据,求出C,就可得到b的值,求出椭圆方程.也就可得F2的坐标,再根据曲线C2是以O为顶点、F2为焦点的抛物线,求出抛物线方程. (Ⅱ)先设出B,E,C,D四点坐标,以及过F2作的与x轴不垂直的直线方程,分别代入椭圆方程和抛物线方程,求y1+y2, y1y2,y3+y4,y3y4,再代入,化简即可. 【解析】 (Ⅰ)设椭圆方程为,则2a=,得a=3 所以椭圆方程为,抛物线方程为y2=4x.     (Ⅱ)设B(x1,y1),E(x2,y2),C(x3,y3),D(x4,y4),直线y=k(x-1),代入得:,即(8+9k2)y2+16ky-64k2=0 则=-,y1y2=- 同理,y=k(x-1),代入y2=4x得,ky2-4y-4k=0 则y3+y4=,y3y4=-4 ∴==3
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和Sn=2an-2n+1
(Ⅰ)证明:数列manfen5.com 满分网是等差数列;
(Ⅱ)若不等式2n2-n-3<(5-λ)an对∀n∈N*恒成立,求λ的取值范围.
查看答案
如图,已知菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,使manfen5.com 满分网,得到三棱锥B-ACD.
(Ⅰ)若点M是棱BC的中点,求证:OM∥平面ABD;
(Ⅱ)求二面角A-BD-O的余弦值;
(Ⅲ)设点N是线段BD上一个动点,试确定N点的位置,使得manfen5.com 满分网,并证明你的结论.manfen5.com 满分网
查看答案
在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC
(Ⅰ)求A的大小;
(Ⅱ)若sinB+sinC=1,试判断△ABC的形状.
查看答案
在△ABC中,∠ABC=45°,∠ACB=60°,△ABC绕BC旋转一周,记以AB为母线的圆锥为M1,记以AC为母线的圆锥为M2,m是圆锥M1任一母线,则圆锥M2的母线中与m垂直的直线有    条. 查看答案
在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x、y,记ξ=|x-2|+|y-x|.ξ的数学期望    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.