满分5 > 高中数学试题 >

设函数f(x)=lnx-ax2-bx. (Ⅰ)当a=b=时,求f(x)的最大值;...

设函数f(x)=lnx-manfen5.com 满分网ax2-bx.
(Ⅰ)当a=b=manfen5.com 满分网时,求f(x)的最大值;
(Ⅱ)令F(x)=f(x)+manfen5.com 满分网ax2+bx+manfen5.com 满分网(0<x≤3),以其图象上任意一点P(x,y)为切点的切线的斜率k≤manfen5.com 满分网恒成立,求实数a的取值范围;
(Ⅲ)当a=0,b=-1时,方程2mf(x)=x2有唯一实数解,求正数m的值.
(I )先求定义域,再研究单调性,从而求最值. (II)先构造函数F(x)再由以其图象上任意一点P(x,y)为切点的切线的斜率k≤恒成立,知导函数≤恒成立,再转化为所以求解. (III)先把程2mf(x)=x2有唯一实数解,转化为所以x2-2mlnx-2mx=0有唯一实数解,再利用单调函数求解. 【解析】 (Ⅰ)依题意,知f(x)的定义域为(0,+∞).(1分) 当时,, .(2分) 令f′(x)=0,解得x=1. 当0<x<1时,f′(x)>,此时f(x)单调递增; 当x>1时,f′(x)<0,此时f(x)单调递减.(3分) 所以f(x)的极大值为,此即为最大值.(4分) (Ⅱ), 所以,在x∈(0,3]上恒成立,(6分) 所以,x∈(0,3](7分) 当x=1时,取得最大值.所以a≥.(9分) (Ⅲ)因为方程2mf(x)=x2有唯一实数解, 所以x2-2mlnx-2mx=0有唯一实数解. 设g(x)=x2-2mlnx-2mx,则. 令g′(x)=0,得x2-mx-m=0. 因为m>0,x>0, 所以(舍去),,(10分) 当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)单调递减, 当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)单调递增. 当x=x2时,g′(x2)=0g(x),g(x2)取最小值g(x2).(11分) 因为g(x)=0有唯一解,所以g(x2)=0. 则,即 所以2mlnx2+mx2-m=0, 因为m>0,所以2lnx2+x2-1=0.(12分) 设函数h(x)=2lnx+x-1, 因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.(13分) 因为h(I)=0,所以方程的解为(X2)=1,即, 解得(14分)
复制答案
考点分析:
相关试题推荐
如图,曲线C1是以原点O为中心、F1,F2为焦点的椭圆的一部分,曲线C2是以O为顶点、F2为焦点的抛物线的一部分,A是曲线C1和C2的交点,曲线C1的离心率为manfen5.com 满分网,若manfen5.com 满分网manfen5.com 满分网
(Ⅰ)求曲线C1和C2所在的椭圆和抛物线方程;
(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问manfen5.com 满分网是否为定值?若是,求出定值;若不是,请说明理由.

manfen5.com 满分网 查看答案
已知数列{an}的前n项和Sn=2an-2n+1
(Ⅰ)证明:数列manfen5.com 满分网是等差数列;
(Ⅱ)若不等式2n2-n-3<(5-λ)an对∀n∈N*恒成立,求λ的取值范围.
查看答案
如图,已知菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,使manfen5.com 满分网,得到三棱锥B-ACD.
(Ⅰ)若点M是棱BC的中点,求证:OM∥平面ABD;
(Ⅱ)求二面角A-BD-O的余弦值;
(Ⅲ)设点N是线段BD上一个动点,试确定N点的位置,使得manfen5.com 满分网,并证明你的结论.manfen5.com 满分网
查看答案
在△ABC中,a、b、c分别为内角A、B、C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC
(Ⅰ)求A的大小;
(Ⅱ)若sinB+sinC=1,试判断△ABC的形状.
查看答案
在△ABC中,∠ABC=45°,∠ACB=60°,△ABC绕BC旋转一周,记以AB为母线的圆锥为M1,记以AC为母线的圆锥为M2,m是圆锥M1任一母线,则圆锥M2的母线中与m垂直的直线有    条. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.