满分5 > 高中数学试题 >

已知f(x)=xlnx,g(x)=x3+ax2-x+2. (Ⅰ)如果函数g(x)...

已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)如果函数g(x)的单调递减区间为manfen5.com 满分网,求函数g(x)的解析式;
(Ⅱ)在(Ⅰ)的条件下,求函数y=g(x)的图象在点P(-1,1)处的切线方程;
(Ⅲ)若不等式2f(x)≤g′(x)+2的解集为P,且(0,+∞)⊆P,求实数a的取值范围.
(Ⅰ)由函数是单调递减函数得g'(x)<0的解集为(-,1)即g'(x)=0方程的两个解是-,1将两个解代入到方程中求出a的值可得到g(x)的解析式; (Ⅱ)由g'(-1)=4得到直线的斜率,直线过(-1,1),则写出直线方程即可; (Ⅲ)把f(x)和g'(x)代入到不等式中解出a≥lnx-x-,设h(x)=lnx--,利用导数讨论函数的增减性求出h(x)的最大值即可得到a的取值范围. 【解析】 (Ⅰ)g'(x)=3x2+2ax-1,由题意3x2+2ax-1<0的解集是(-,1) 即3x2+2ax-1=0的两根分别是-,1 将x=1或-代入方程3x2+2ax-1=0得a=-1. ∴g(x)=x3-x2-x+2. (Ⅱ)由(Ⅰ)知:g'(x)=3x2-2x-1, ∴g'(-1)=4, ∴点P(-1,1)处的切线斜率k=g'(-1)=4, ∴函数y=g(x)的图象在点P(-1,1)处的切线方程为:y-1=4(x+1),即4x-y+5=0. (Ⅲ)∵(0,+∞)⊆P, ∴2f(x)≤g'(x)+2即:2xlnx≤3x2+2ax+1对x∈(0,+∞)上恒成立可得 a≥lnx-x-对x∈(0,+∞)上恒成立. 设h(x)=lnx--,则h′(x)=-+=- 令h′(x)=0,得x=1,x=-(舍) 当0<x<1时,h′(x)>0;当x>1时,h′(x)<0 ∴当x=1时,h(x)取得最大值,h(x)max=-2. ∴a≥-2, ∴a的取值范围是[-2,+∞)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(1)若f(x)=2,求x的值;
(2)若3tf(2t)+mf(t)≥0对于manfen5.com 满分网恒成立,求实数m的取值范围.
查看答案
二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在区间[-1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.
查看答案
已知函数f(x)=2x3+ax2+bx+3在x=-1和x=2处取得极值.
(1)求f(x)的表达式和极值.
(2)若f(x)在区间[m,m+4]上是单调函数,试求m的取值范围.
查看答案
某工厂生产某种产品,已知该产品的产量x(吨)与每吨产品的价格P(元/吨)之间的关系为manfen5.com 满分网,且生产x吨的成本为R=50000+200x元.问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入-成本)
查看答案
记函数f(x)=manfen5.com 满分网的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.
(1)求A;
(2)若B⊆A,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.