满分5 > 高中数学试题 >

已知x,y,z均为正数.求证:.

已知x,y,z均为正数.求证:manfen5.com 满分网
分别对,,进行化简分析,得出与的关系,然后三个式子左右分别相加除以2即可得到结论. 证明:因为x,y,z都是为正数, 所以   ① 同理可得                     ②                     ③ 当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2, 得:
复制答案
考点分析:
相关试题推荐
已知极坐标系的极点O与直角坐标系的原点重合,极轴与x轴的正半轴重合,曲线C1manfen5.com 满分网与曲线C2manfen5.com 满分网(t∈R)交于A、B两点.求证:OA⊥OB.
查看答案
选修4-2 矩阵与变换
已知矩阵manfen5.com 满分网
(1)求逆矩阵A-1
(2)若矩阵X满足manfen5.com 满分网,试求矩阵X.
查看答案
manfen5.com 满分网如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F.求证:△PDF∽△POC.
查看答案
已知函数f(x)=ax2+bx+c(a≠0)满足f(0)=0,对于任意x∈R都有f(x)≥x,且manfen5.com 满分网,令g(x)=f(x)-|λx-1|(λ>0).
(1)求函数f(x)的表达式;
(2)求函数g(x)的单调区间;
(3)研究函数g(x)在区间(0,1)上的零点个数.
查看答案
设首项为a1的正项数列{an}的前n项和为Sn,q为非零常数,已知对任意正整数n,m,Sn+m=Sm+qmSn总成立.
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)若不等的正整数m,k,h成等差数列,试比较amm•ahh与ak2k的大小;
(Ⅲ)若不等的正整数m,k,h成等比数列,试比较manfen5.com 满分网manfen5.com 满分网的大小.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.